Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Nutr ; 11: 1367864, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38757128

RESUMEN

Background: Allergic Asthma is a disease presenting various endotypes and no current therapies act curative but alleviate disease symptoms. Dietary interventions are gaining increasing importance in regulating immune responses. Furthermore, short chain fatty acids (SFCA), as the main products of dietary fiber's fermentation by the gut bacteria, ameliorate the pathogenesis and disease burden of different illnesses including asthma. Nevertheless, the connection and crosstalk between the gut and lung is poorly understood. Objective: In this work, the role of high fiber diet on the development of allergic asthma at baseline and after exacerbation of disease induced by respiratory viruses was investigated. Methods: Hereby, SCFA in serum of asthmatic and non-asthmatic pre-school children before and after airway disease symptoms were analyzed. Moreover, the effect of high fiber diet in vivo in a murine model of house dust mite extract (HDM) induced allergic asthma and in the end in isolated lung and spleen cells infected ex vivo with Rhinovirus was analyzed. Results: In this study, a decrease of the SCFA 3-Hydroxybutyric acid in serum of asthmatic children after symptomatic episodes at convalescent visit as compared to asthmatic and control children at baseline visit was observed. In experimental asthma, in mice fed with high fiber diet, a reduced lung GATA3 + Th2 type mediated inflammation, mucus production and collagen deposition and expression of Fc epsilon receptor Ia (FcεRIa) in eosinophils was observed. By contrast, the CD8+ memory effector T cells were induced in the lungs of asthmatic mice fed with high fiber diet. Then, total lung cells from these asthmatic mice fed with either standard food or with fiber rich food were infected with RV ex vivo. Here, RV1b mRNA was found significantly reduced in the lung cells derived from fiber rich food fed mice as compared to those derived from standard food fed asthmatic mice. Looking for the mechanism, an increase in CD8+ T cells in RV infected spleen cells derived from fiber rich fed asthmatic mice, was observed. Conclusion: Convalescent preschool asthmatic children after a symptomatic episode have less serum ß-Hydroxybutyric acid as compared to control and asthmatic children at baseline visit. Fiber rich diet associated with anti-inflammatory effects as well as anti-allergic effects by decreasing Type 2 and IgE mediated immune responses and inducing CD8+ memory effector T cells in a murine model of allergic asthma. Finally, ex vivo infection with Rhinovirus (RV) of total lung cells from asthmatic mice fed with fiber rich food led to a decreased RV load as compared to mice fed with standard food. Moreover, spleen cells derived from asthmatic mice fed with fiber rich food induced CD8+ T cells after ex vivo infection with RV. Clinical implications: Dietary interventions with increased content in natural fibers like pectins would ameliorate asthma exacerbations. Moreover, respiratory infection in asthma downregulated SCFA in the gut contributing to asthma exacerbations.

2.
Sci Rep ; 13(1): 5662, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024569

RESUMEN

Neoplasms of the lungs are the leading cause of cancer incidence and mortality worldwide. Although immunotherapy has increased the overall survival of patients with lung cancer, there is the need to improve this treatment. At this regard, blood lipid levels are thought to be linked to cancer risk and thus a preventive intervention through regulation of the nutrition of patients with lung cancer is gaining much attention. In this study, we therefore asked about the contribution of serum lipids and cholesterol cellular metabolism in lung cancer development and progression. We measured different serum lipids and analyzed cholesterol synthesis enzymes 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR) and acetyl-coenzyme A cholesterol acetyltransferase 1 (ACAT1) as well as the cholesterol cellular export protein ATP-binding cassette (ABC) A-1 mRNA by quantitative PCR (qPCR) in the control and tumoral regions of post-surgery lung tissues to analyze the accumulation of cholesterol in cancer cells in a cohort of patients with lung adenocarcinoma (LUAD). We found that triglycerides in serum directly correlated with the body mass index (BMI) in patients with LUAD. By contrast, we found that high-density lipoprotein (HDL) cholesterol inversely correlated with the BMI, C-reactive protein (CRP) and overall survival and total cholesterol inversely correlated with the tumor diameter, serum CRP and overall survival in these LUAD patients. Functionally, the role of cholesterol is indispensable for the growth and development of normal animal cells where it is tightly regulated. Excess of cellular cholesterol regulated by HMGCR is converted to cholesteryl esters by the enzyme ACAT1 and exported extracellularly by the cholesterol transporter ABCA1. Here we found HMGCR and ACAT1 upregulated and ABCA1 downregulated in the lung's tumoral region of our LUAD cohort, indicating cholesterol dysregulated cellular export in lung tumor cells.


Asunto(s)
Colesterol , Neoplasias Pulmonares , Animales , Colesterol/metabolismo , Triglicéridos , HDL-Colesterol , Ésteres del Colesterol , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo
3.
Biochem J ; 422(1): 83-90, 2009 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-19489740

RESUMEN

Until recently, a modest number of approx. 40 lysosomal membrane proteins had been identified and even fewer were characterized in their function. In a proteomic study, using lysosomal membranes from human placenta we identified several candidate lysosomal membrane proteins and proved the lysosomal localization of two of them. In the present study, we demonstrate the lysosomal localization of the mouse orthologue of the human C1orf85 protein, which has been termed kidney-predominant protein NCU-G1 (GenBank accession number: AB027141). NCU-G1 encodes a 404 amino acid protein with a calculated molecular mass of 39 kDa. The bioinformatics analysis of its amino acid sequence suggests it is a type I transmembrane protein containing a single tyrosine-based consensus lysosomal sorting motif at position 400 within the 12-residue C-terminal tail. Its lysosomal localization was confirmed using immunofluorescence with a C-terminally His-tagged NCU-G1 and the lysosomal marker LAMP-1 (lysosome-associated membrane protein-1) as a reference, and by subcellular fractionation of mouse liver after a tyloxapol-induced density shift of the lysosomal fraction using an anti-NCU-G1 antiserum. In transiently transfected HT1080 and HeLa cells, the His-tagged NCU-G1 was detected in two molecular forms with apparent protein sizes of 70 and 80 kDa, and in mouse liver the endogenous wild-type NCU-G1 was detected as a 75 kDa protein. The remarkable difference between the apparent and the calculated molecular masses of NCU-G1 was shown, by digesting the protein with N-glycosidase F, to be due to an extensive glycosylation. The lysosomal localization was impaired by mutational replacement of an alanine residue for the tyrosine residue within the putative sorting motif.


Asunto(s)
Lisosomas/metabolismo , Proteínas de la Membrana/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Centrifugación por Gradiente de Densidad , Clonación Molecular , Biología Computacional , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Glicosilación/efectos de los fármacos , Células HeLa , Humanos , Lisosomas/efectos de los fármacos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Polietilenglicoles/farmacología , Transporte de Proteínas/efectos de los fármacos , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...