Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
Placenta ; 151: 19-25, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38657321

RESUMEN

INTRODUCTION: Placental insufficiency may lead to preeclampsia and fetal growth restriction. There is no cure for placental insufficiency, emphasizing the need for monitoring fetal and placenta health. Current monitoring methods are limited, underscoring the necessity for imaging techniques to evaluate fetal-placental perfusion and oxygenation. This study aims to use MRI to evaluate placental oxygenation and perfusion in the reduced uterine perfusion pressure (RUPP) model of placental insufficiency. METHODS: Pregnant rats were randomized to RUPP (n = 11) or sham surgery (n = 8) on gestational day 14. On gestational day 19, rats imaged using a 7T MRI scanner to assess oxygenation and perfusion using T2* mapping and 3D-DCE MRI sequences, respectively. The effect of the RUPP on the feto-placental units were analyzed from the MRI images. RESULTS: RUPP surgery led to reduced oxygenation in the labyrinth (24.7 ± 1.8 ms vs. 28.0 ± 2.1 ms, P = 0.002) and junctional zone (7.0 ± 0.9 ms vs. 8.1 ± 1.1 ms, P = 0.04) of the placenta, as indicated by decreased T2* values. However, here were no significant differences in fetal organ oxygenation or placental perfusion between RUPP and sham animals. DISCUSSION: The reduced placental oxygenation without a corresponding decrease in perfusion suggests an adaptive response to placental ischemia. While acute reduction in placental perfusion may cause placental hypoxia, persistence of this condition could indicate chronic placental insufficiency after ischemic reperfusion injury. Thus, placental oxygenation may be a more reliable biomarker for assessing fetal condition than perfusion in hypertensive disorders of pregnancies including preeclampsia and FGR.

2.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38612407

RESUMEN

A small fraction of people vaccinated with mRNA-lipid nanoparticle (mRNA-LNP)-based COVID-19 vaccines display acute or subacute inflammatory symptoms whose mechanism has not been clarified to date. To better understand the molecular mechanism of these adverse events (AEs), here, we analyzed in vitro the vaccine-induced induction and interrelations of the following two major inflammatory processes: complement (C) activation and release of proinflammatory cytokines. Incubation of Pfizer-BioNTech's Comirnaty and Moderna's Spikevax with 75% human serum led to significant increases in C5a, sC5b-9, and Bb but not C4d, indicating C activation mainly via the alternative pathway. Control PEGylated liposomes (Doxebo) also induced C activation, but, on a weight basis, it was ~5 times less effective than that of Comirnaty. Viral or synthetic naked mRNAs had no C-activating effects. In peripheral blood mononuclear cell (PBMC) cultures supplemented with 20% autologous serum, besides C activation, Comirnaty induced the secretion of proinflammatory cytokines in the following order: IL-1α < IFN-γ < IL-1ß < TNF-α < IL-6 < IL-8. Heat-inactivation of C in serum prevented a rise in IL-1α, IL-1ß, and TNF-α, suggesting C-dependence of these cytokines' induction, although the C5 blocker Soliris and C1 inhibitor Berinert, which effectively inhibited C activation in both systems, did not suppress the release of any cytokines. These findings suggest that the inflammatory AEs of mRNA-LNP vaccines are due, at least in part, to stimulation of both arms of the innate immune system, whereupon C activation may be causally involved in the induction of some, but not all, inflammatory cytokines. Thus, the pharmacological attenuation of inflammatory AEs may not be achieved via monotherapy with the tested C inhibitors; efficacy may require combination therapy with different C inhibitors and/or other anti-inflammatory agents.


Asunto(s)
COVID-19 , Inactivadores del Complemento , Nanopartículas , Humanos , Liposomas , Vacunas contra la COVID-19/efectos adversos , Leucocitos Mononucleares , Citocinas , Factor de Necrosis Tumoral alfa , Vacuna BNT162 , Activación de Complemento , Lípidos
3.
Proc Natl Acad Sci U S A ; 121(11): e2307803120, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437542

RESUMEN

Lipid nanoparticle (LNP) formulations are a proven method for the delivery of nucleic acids for gene therapy as exemplified by the worldwide rollout of LNP-based RNAi therapeutics and mRNA vaccines. However, targeting specific tissues or cells is still a major challenge. After LNP administration, LNPs interact with biological fluids (i.e., blood), components of which adsorb onto the LNP surface forming a layer of biomolecules termed the "biomolecular corona (BMC)" which affects LNP stability, biodistribution, and tissue tropism. The mechanisms by which the BMC influences tissue- and cell-specific targeting remains largely unknown, due to the technical challenges in isolating LNPs and their corona from complex biological media. In this study, we present a new technique that utilizes magnetic LNPs to isolate LNP-corona complexes from unbound proteins present in human serum. First, we developed a magnetic LNP formulation, containing >40 superparamagnetic iron oxide nanoparticles (IONPs)/LNP, the resulting LNPs containing iron oxide nanoparticles (IOLNPs) displayed a similar particle size and morphology as LNPs loaded with nucleic acids. We further demonstrated the isolation of the IOLNPs and their corresponding BMC from unbound proteins using a magnetic separation (MS) system. The BMC profile of LNP from the MS system was compared to size exclusion column chromatography and further analyzed via mass spectrometry, revealing differences in protein abundances. This new approach enabled a mild and versatile isolation of LNPs and its corona, while maintaining its structural integrity. The identification of the BMC associated with an intact LNP provides further insight into LNP interactions with biological fluids.


Asunto(s)
Liposomas , Nanopartículas , Ácidos Nucleicos , Humanos , Distribución Tisular , Fenómenos Magnéticos
4.
Adv Drug Deliv Rev ; 206: 115190, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38307296

RESUMEN

mRNA-based vaccines are emerging as a promising alternative to standard cancer treatments and the conventional vaccines. Moreover, the FDA-approval of three nucleic acid based therapeutics (Onpattro, BNT162b2 and mRNA-1273) has further increased the interest and trust on this type of therapeutics. In order to achieve a significant therapeutic efficacy, the mRNA needs from a drug delivery system. In the last years, several delivery platforms have been explored, being the lipid nanoparticles (LNPs) the most well characterized and studied. A better understanding on how mRNA-based therapeutics operate (both the mRNA itself and the drug delivery system) will help to further improve their efficacy and safety. In this review, we will provide an overview of what mRNA cancer vaccines are and their mode of action and we will highlight the advantages and challenges of the different delivery platforms that are under investigation.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Vacuna BNT162 , Neoplasias/terapia , Liposomas , Inmunoterapia , ARN Mensajero/genética , Vacunas de ARNm
5.
Stem Cell Res Ther ; 15(1): 19, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38229180

RESUMEN

BACKGROUND: After myocardial infarction, the lost myocardium is replaced by fibrotic tissue, eventually progressively leading to myocardial dysfunction. Direct reprogramming of fibroblasts into cardiomyocytes via the forced overexpression of cardiac transcription factors Gata4, Mef2c, and Tbx5 (GMT) offers a promising strategy for cardiac repair. The limited reprogramming efficiency of this approach, however, remains a significant challenge. METHODS: We screened seven factors capable of improving direct cardiac reprogramming of both mice and human fibroblasts by evaluating small molecules known to be involved in cardiomyocyte differentiation or promoting human-induced pluripotent stem cell reprogramming. RESULTS: We found that vitamin C (VitC) significantly increased cardiac reprogramming efficiency when added to GMT-overexpressing fibroblasts from human and mice in 2D and 3D model. We observed a significant increase in reactive oxygen species (ROS) generation in human and mice fibroblasts upon Doxy induction, and ROS generation was subsequently reduced upon VitC treatment, associated with increased reprogramming efficiency. However, upon treatment with dehydroascorbic acid, a structural analog of VitC but lacking antioxidant properties, no difference in reprogramming efficiency was observed, suggesting that the effect of VitC in enhancing cardiac reprogramming is partly dependent of its antioxidant properties. CONCLUSIONS: Our findings demonstrate that VitC supplementation significantly enhances the efficiency of cardiac reprogramming, partially by suppressing ROS production in the presence of GMT.


Asunto(s)
Antioxidantes , Ácido Ascórbico , Humanos , Ratones , Animales , Especies Reactivas de Oxígeno , Ácido Ascórbico/farmacología , Antioxidantes/farmacología , Reprogramación Celular , Proteínas de Dominio T Box/genética , Factores de Transcripción MEF2/genética , Miocitos Cardíacos , Vitaminas , Fibroblastos
6.
J Extracell Vesicles ; 13(1): e12389, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38191764

RESUMEN

The loss-of-function of the proprotein convertase subtilisin-kexin type 9 (Pcsk9) gene has been associated with significant reductions in plasma serum low-density lipoprotein cholesterol (LDL-C) levels. Both CRISPR/Cas9 and CRISPR-based editor-mediated Pcsk9 inactivation have successfully lowered plasma LDL-C and PCSK9 levels in preclinical models. Despite the promising preclinical results, these studies did not report how vehicle-mediated CRISPR delivery inactivating Pcsk9 affected low-density lipoprotein receptor recycling in vitro or ex vivo. Extracellular vesicles (EVs) have shown promise as a biocompatible delivery vehicle, and CRISPR/Cas9 ribonucleoprotein (RNP) has been demonstrated to mediate safe genome editing. Therefore, we investigated EV-mediated RNP targeting of the Pcsk9 gene ex vivo in primary mouse hepatocytes. We engineered EVs with the rapamycin-interacting heterodimer FK506-binding protein (FKBP12) to contain its binding partner, the T82L mutant FKBP12-rapamycin binding (FRB) domain, fused to the Cas9 protein. By integrating the vesicular stomatitis virus glycoprotein on the EV membrane, the engineered Cas9 EVs were used for intracellular CRISPR/Cas9 RNP delivery, achieving genome editing with an efficacy of ±28.1% in Cas9 stoplight reporter cells. Administration of Cas9 EVs in mouse hepatocytes successfully inactivated the Pcsk9 gene, leading to a reduction in Pcsk9 mRNA and increased uptake of the low-density lipoprotein receptor and LDL-C. These readouts can be used in future experiments to assess the efficacy of vehicle-mediated delivery of genome editing technologies targeting Pcsk9. The ex vivo data could be a step towards reducing animal testing and serve as a precursor to future in vivo studies for EV-mediated CRISPR/Cas9 RNP delivery targeting Pcsk9.


Asunto(s)
Vesículas Extracelulares , Animales , Ratones , LDL-Colesterol , Sistemas CRISPR-Cas , Hepatocitos , Proproteína Convertasa 9/genética , Subtilisinas , Proteína 1A de Unión a Tacrolimus
7.
ACS Nano ; 17(23): 23466-23477, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37982378

RESUMEN

Heart failure is a serious condition that results from the extensive loss of specialized cardiac muscle cells called cardiomyocytes (CMs), typically caused by myocardial infarction (MI). Messenger RNA (mRNA) therapeutics are emerging as a very promising gene medicine for regenerative cardiac therapy. To date, lipid nanoparticles (LNPs) represent the most clinically advanced mRNA delivery platform. Yet, their delivery efficiency has been limited by their endosomal entrapment after endocytosis. Previously, we demonstrated that a pair of complementary coiled-coil peptides (CPE4/CPK4) triggered efficient fusion between liposomes and cells, bypassing endosomal entrapment and resulting in efficient drug delivery. Here, we modified mRNA-LNPs with the fusogenic coiled-coil peptides and demonstrated efficient mRNA delivery to difficult-to-transfect induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs). As proof of in vivo applicability of these fusogenic LNPs, local administration via intramyocardial injection led to significantly enhanced mRNA delivery and concomitant protein expression. This represents the successful application of the fusogenic coiled-coil peptides to improve mRNA-LNPs transfection in the heart and provides the potential for the advanced development of effective regenerative therapies for heart failure.


Asunto(s)
Insuficiencia Cardíaca , Nanopartículas , Humanos , Liposomas , ARN Mensajero/genética , Péptidos
8.
Protein Cell ; 14(8): 560-578, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37526344

RESUMEN

Polyploid cells, which contain more than one set of chromosome pairs, are very common in nature. Polyploidy can provide cells with several potential benefits over their diploid counterparts, including an increase in cell size, contributing to organ growth and tissue homeostasis, and improving cellular robustness via increased tolerance to genomic stress and apoptotic signals. Here, we focus on why polyploidy in the cell occurs and which stress responses and molecular signals trigger cells to become polyploid. Moreover, we discuss its crucial roles in cell growth and tissue regeneration in the heart, liver, and other tissues.


Asunto(s)
Hepatocitos , Hígado , Humanos , Ciclo Celular , Poliploidía , Homeostasis
9.
Int J Pharm X ; 6: 100191, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37408568

RESUMEN

In glioblastoma, a malignant primary brain tumor, liposomes have shown promise in pre-clinical and early phase clinical trials as delivery vehicles for therapeutics. However, external factors influencing cellular uptake of liposomes in glioma cells are poorly understood. Heparin and heparin analogues are commonly used in glioma patients to decrease the risk of thrombo-embolic events. Our results show that heparin inhibits pegylated liposome uptake by U87 glioma and GL261 cells in a dose dependent manner in vitro, and that heparin-mediated inhibition of uptake required presence of fetal bovine serum in the media. In a subcutaneous model of glioma, Cy5.5 labeled liposomes could be detected with in vivo imaging after direct intra-tumoral injection. Ex-vivo analysis with flow cytometry showed a decreased uptake of liposomes into tumor cells in mice treated systemically with heparin compared to those treated with vehicle only.

10.
Pharmaceutics ; 15(6)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37376052

RESUMEN

Lipid nanoparticles (LNPs) have evolved rapidly as promising delivery systems for oligonucleotides, including siRNAs. However, current clinical LNP formulations show high liver accumulation after systemic administration, which is unfavorable for the treatment of extrahepatic diseases, such as hematological disorders. Here we describe the specific targeting of LNPs to hematopoietic progenitor cells in the bone marrow. Functionalization of the LNPs with a modified Leu-Asp-Val tripeptide, a specific ligand for the very-late antigen 4 resulted in an improved uptake and functional siRNA delivery in patient-derived leukemia cells when compared to their non-targeted counterparts. Moreover, surface-modified LNPs displayed significantly improved bone-marrow accumulation and retention. These were associated with increased LNP uptake by immature hematopoietic progenitor cells, also suggesting similarly improved uptake by leukemic stem cells. In summary, we describe an LNP formulation that successfully targets the bone marrow including leukemic stem cells. Our results thereby support the further development of LNPs for targeted therapeutic interventions for leukemia and other hematological disorders.

11.
J Control Release ; 360: 212-224, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37343725

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder characterized by degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) resulting in dopamine (DA) deficiency, which manifests itself in motor symptoms including tremors, rigidity and bradykinesia. Current PD treatments aim at symptom reduction through oral delivery of levodopa (L-DOPA), a precursor of DA. However, L-DOPA delivery to the brain is inefficient and increased dosages are required as the disease progresses, resulting in serious side effects like dyskinesias. To improve PD treatment efficacy and to reduce side effects, recent research focuses on the encapsulation of L-DOPA into polymeric- and lipid-based nanoparticles (NPs). These formulations can protect L-DOPA from systemic decarboxylation into DA and improve L-DOPA delivery to the central nervous system. Additionally, NPs can be modified with proteins, peptides and antibodies specifically targeting the blood-brain barrier (BBB), thereby reducing required dosages and free systemic DA. Alternative delivery approaches for NP-encapsulated L-DOPA include intravenous (IV) administration, transdermal delivery using adhesive patches and direct intranasal administration, facilitating increased therapeutic DA concentrations in the brain. This review provides an overview of the recent advances for NP-mediated L-DOPA delivery to the brain, and debates challenges and future perspectives on the field.


Asunto(s)
Nanopartículas , Enfermedad de Parkinson , Humanos , Levodopa/uso terapéutico , Enfermedad de Parkinson/metabolismo , Dopamina/metabolismo , Encéfalo/metabolismo
12.
J Control Release ; 355: 579-592, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36746337

RESUMEN

Extracellular vesicles (EVs) have emerged as biocompatible drug delivery vehicles due to their native ability to deliver bioactive cargo to recipient cells. However, the application of EVs as a therapeutic delivery vehicle is hampered by effective methods for endogenously loading target proteins inside EVs and unloading proteins after delivery to recipient cells. Most EV-based engineered loading methods have a limited delivery efficiency owing to their inefficient endosomal escape or cargo release from the intraluminal attachment from the EV membrane. Here, we describe the 'Technology Of Protein delivery through Extracellular Vesicles' (TOP-EVs) as a tool for efficient intracellular delivery of target proteins mediated via EVs. The vesicular stomatitis virus glycoprotein and the rapamycin-heterodimerization of the FKBP12/T82L mutant FRB proteins were both important for the effective protein delivery through TOP-EVs. We showed that TOP-EVs could efficiently deliver Cre recombinase and CRISPR/Cas9 ribonucleoprotein complex in vitro. Moreover, our results demonstrated that the capacity of TOP-EVs to deliver intracellular proteins in recipient cells was not an artifact of plasmid contamination or direct plasmid loading into EVs. Finally, we showed that TOP-EVs could successfully mediate intracellular protein delivery in the liver in vivo. Taken together, TOP-EVs are a versatile platform for efficient intracellular protein delivery in vitro and in vivo, which can be applied to advance the development of protein-based therapeutics.


Asunto(s)
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Comunicación Celular , Sistemas de Liberación de Medicamentos/métodos , Endosomas , Tecnología
13.
Mol Ther ; 30(9): 3078-3094, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-35821637

RESUMEN

mRNA vaccines have recently proved to be highly effective against SARS-CoV-2. Key to their success is the lipid-based nanoparticle (LNP), which enables efficient mRNA expression and endows the vaccine with adjuvant properties that drive potent antibody responses. Effective cancer vaccines require long-lived, qualitative CD8 T cell responses instead of antibody responses. Systemic vaccination appears to be the most effective route, but necessitates adaptation of LNP composition to deliver mRNA to antigen-presenting cells. Using a design-of-experiments methodology, we tailored mRNA-LNP compositions to achieve high-magnitude tumor-specific CD8 T cell responses within a single round of optimization. Optimized LNP compositions resulted in enhanced mRNA uptake by multiple splenic immune cell populations. Type I interferon and phagocytes were found to be essential for the T cell response. Surprisingly, we also discovered a yet unidentified role of B cells in stimulating the vaccine-elicited CD8 T cell response. Optimized LNPs displayed a similar, spleen-centered biodistribution profile in non-human primates and did not trigger histopathological changes in liver and spleen, warranting their further assessment in clinical studies. Taken together, our study clarifies the relationship between nanoparticle composition and their T cell stimulatory capacity and provides novel insights into the underlying mechanisms of effective mRNA-LNP-based antitumor immunotherapy.


Asunto(s)
COVID-19 , Vacunas contra el Cáncer , Nanopartículas , Animales , Inmunización/métodos , Inmunoterapia , ARN Mensajero/metabolismo , SARS-CoV-2/genética , Bazo , Distribución Tisular , Vacunación/métodos
14.
J Extracell Vesicles ; 11(5): e12222, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35536587

RESUMEN

Air pollution, via ambient PM2.5, is a big threat to public health since it associates with increased hospitalisation, incidence rate and  mortality of cardiopulmonary injury. However, the potential mediators of pulmonary injury in PM2.5 -induced cardiovascular disorder are not fully understood. To investigate a potential cross talk between lung and heart upon PM2.5 exposure, intratracheal instillation in vivo, organ culture ex vivo and human bronchial epithelial cells (Beas-2B) culture in vitro experiments were performed respectively. The exposed supernatants of Beas-2B were collected to treat primary neonatal rat cardiomyocytes (NRCMs). Upon intratracheal instillation, subacute PM2.5 exposure caused cardiac dysfunction, which was time-dependent secondary to lung injury in mice, thereby demonstrating a cross-talk between lungs and heart potentially mediated via small extracellular vesicles (sEV). We isolated sEV from PM2.5 -exposed mice serum and Beas-2B supernatants to analyse the change of sEV subpopulations in response to PM2.5 . Single particle interferometric reflectance imaging sensing analysis (SP-IRIS) demonstrated that PM2.5 increased CD63/CD81/CD9 positive particles. Our results indicated that respiratory system-derived sEV containing miR-421 contributed to cardiac dysfunction post-PM2.5 exposure. Inhibition of miR-421 by AAV9-miR421-sponge could significantly reverse PM2.5 -induced cardiac dysfunction in mice. We identified that cardiac angiotensin converting enzyme 2 (ACE2) was a downstream target of sEV-miR421, and induced myocardial cell apoptosis and cardiac dysfunction. In addition, we observed that GW4869 (an inhibitor of sEV release) or diminazene aceturate (DIZE, an activator of ACE2) treatment could attenuate PM2.5 -induced cardiac dysfunction in vivo. Taken together, our results suggest that PM2.5 exposure promotes sEV-linked miR421 release after lung injury and hereby contributes to PM2.5 -induced cardiac dysfunction via suppressing ACE2.


Asunto(s)
Contaminación del Aire , Vesículas Extracelulares , Cardiopatías , Lesión Pulmonar , MicroARNs , Contaminación del Aire/análisis , Enzima Convertidora de Angiotensina 2 , Animales , Ratones , Miocitos Cardíacos , Material Particulado/efectos adversos , Ratas
15.
Int J Pharm ; 618: 121638, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35257802

RESUMEN

In the present work, we aim at developing an in vitro release assay to predict circulation times of hydrophobic drugs loaded into polymeric micelles (PM), upon intravenous (i.v.) administration. PM based on poly (ethylene glycol)-b-poly (N-2-benzoyloxypropyl methacrylamide) (mPEG-b-p(HPMA-Bz)) block copolymer were loaded with a panel of hydrophobic anti-cancer drugs and characterized for size, loading efficiency and release profile in different release media. Circulation times in mice of two selected drugs loaded in PM were evaluated and compared to the in vitro release profile. Release of drugs from PM was evaluated over 7 days in PBS containing Triton X-100 and in PBS containing albumin at physiological concentration (40 g/L). The results were utilized to identify crucial molecular features of the studied hydrophobic drugs leading to better micellar retention. For the best and the worst retained drugs in the in vitro assays (ABT-737 and BCI, respectively), the circulation of free and entrapped drugs into PM was examined after i.v. administration in mice. We found in vivo drug retention at 24 h post-injection similar to the retention found in the in vitro assays. This demonstrates that in vitro release assay in buffers supplemented with albumin, and to a lesser degree Triton X-100, can be employed to predict the in vivo circulation kinetics of drugs loaded in PM. Utilizing media containing acceptor molecules for hydrophobic compounds, provide a first screen to understand the stability of drug-loaded PM in the circulation and, therefore, can contribute to the reduction of animals used for circulation kinetics studies.


Asunto(s)
Portadores de Fármacos , Micelas , Albúminas , Animales , Portadores de Fármacos/química , Liberación de Fármacos , Ratones , Octoxinol , Polietilenglicoles/química , Polímeros/química
16.
J Thromb Haemost ; 20(5): 1213-1222, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35170225

RESUMEN

BACKGROUND: Thrombomodulin on endothelial cells can form a complex with thrombin. This complex has both anticoagulant properties, by activating protein C, and clot-protective properties, by activating thrombin-activatable fibrinolysis inhibitor (TAFI). Activated TAFI (TAFIa) inhibits plasmin-mediated fibrinolysis. OBJECTIVES: TAFIa inhibition is considered a potential antithrombotic strategy. So far, this goal has been pursued by developing compounds that directly inhibit TAFIa. In contrast, we here describe variable domain of heavy-chain-only antibody (VhH) clone 1 that inhibits TAFI activation by targeting human thrombomodulin. METHODS: Two llamas (Lama Glama) were immunized, and phage display was used to select VhH anti-thrombomodulin (TM) clone 1. Affinity was determined with surface plasmon resonance and binding to native TM was confirmed with flow cytometry. Clone 1 was functionally assessed by competition, clot lysis, and thrombin generation assays. Last, the effect of clone 1 on tPA-mediated fibrinolysis in human whole blood was investigated in a microfluidic fibrinolysis model. RESULTS: VhH anti-TM clone 1 bound recombinant TM with a binding affinity of 1.7 ± 0.4 nM and showed binding to native TM. Clone 1 competed with thrombin for binding to TM and attenuated TAFI activation in clot lysis assays and protein C activation in thrombin generation experiments. In a microfluidic fibrinolysis model, inhibition of TM with clone 1 fully prevented TAFI activation. DISCUSSION: We have developed VhH anti-TM clone 1, which inhibits TAFI activation and enhances tPA-mediated fibrinolysis under flow. Different from agents that directly target TAFIa, our strategy should preserve direct TAFI activation via thrombin.


Asunto(s)
Carboxipeptidasa B2 , Carboxipeptidasa B2/metabolismo , Células Clonales/metabolismo , Células Endoteliales/metabolismo , Fibrinólisis , Humanos , Proteína C/metabolismo , Trombina/metabolismo , Trombomodulina/química
17.
J Control Release ; 343: 207-216, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35077739

RESUMEN

Lipid Nanoparticles (LNPs) are a promising drug delivery vehicle for clinical siRNA delivery. Modified mRNA (modRNA) has recently gained great attention as a therapeutic molecule in cardiac regeneration. However, for mRNA to be functional, it must first reach the diseased myocardium, enter the target cell, escape from the endosomal compartment into the cytosol and be translated into a functional protein. However, it is unknown if LNPs can effectively deliver mRNA, which is much larger than siRNA, to the ischemic myocardium. Here, we evaluated the ability of LNPs to deliver mRNA to the myocardium upon ischemia-reperfusion injury functionally. By exploring the bio-distribution of fluorescently labeled LNPs, we observed that, upon reperfusion, LNPs accumulated in the infarct area of the heart. Subsequently, the functional delivery of modRNA was evaluated by the administration of firefly luciferase encoding modRNA. Concomitantly, a significant increase in firefly luciferase expression was observed in the heart upon myocardial reperfusion when compared to sham-operated animals. To characterize the targeted cells within the myocardium, we injected LNPs loaded with Cre modRNA into Cre-reporter mice. Upon LNP infusion, Tdtomato+ cells, derived from Cre mediated recombination, were observed in the infarct region as well as the epicardial layer upon LNP infusion. Within the infarct area, most targeted cells were cardiac fibroblasts but also some cardiomyocytes and macrophages were found. Although the expression levels were low compared to LNP-modRNA delivery into the liver, our data show the ability of LNPs to functionally deliver modRNA therapeutics to the damaged myocardium, which holds great promise for modRNA-based cardiac therapies.


Asunto(s)
Luciferasas de Luciérnaga , Nanopartículas , Animales , Infarto , Liposomas , Ratones , Miocardio , ARN Mensajero , ARN Interferente Pequeño/genética
18.
Adv Healthc Mater ; 11(5): e2101202, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34382360

RESUMEN

The therapeutic use of RNA interference is limited by the inability of siRNA molecules to reach their site of action, the cytosol of target cells. Lipid nanoparticles, including liposomes, are commonly employed as siRNA carrier systems to overcome this hurdle, although their widespread use remains limited due to a lack of delivery efficiency. More recently, nature's own carriers of RNA, extracellular vesicles (EVs), are increasingly being considered as alternative siRNA delivery vehicles due to their intrinsic properties. However, they are difficult to load with exogenous cargo. Here, EV-liposome hybrid nanoparticles (hybrids) are prepared and evaluated as an alternative delivery system combining properties of both liposomes and EVs. It is shown that hybrids are spherical particles encapsulating siRNA, contain EV-surface makers, and functionally deliver siRNA to different cell types. The functional behavior of hybrids, in terms of cellular uptake, toxicity, and gene-silencing efficacy, is altered as compared to liposomes and varies among recipient cell types. Moreover, hybrids produced with cardiac progenitor cell (CPC) derived-EVs retain functional properties attributed to CPC-EVs such as activation of endothelial signaling and migration. To conclude, hybrids combine benefits of both synthetic and biological drug delivery systems and might serve as future therapeutic carriers of siRNA.


Asunto(s)
Vesículas Extracelulares , Nanopartículas , Sistemas de Liberación de Medicamentos , Vesículas Extracelulares/metabolismo , Liposomas , ARN Interferente Pequeño
19.
J Control Release ; 341: 475-486, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34890719

RESUMEN

PEGylation of lipid-based nanoparticles and other nanocarriers is widely used to increase their stability and plasma half-life. However, either pre-existing or de novo formed anti-PEG antibodies can induce hypersensitivity reactions and accelerated blood clearance through binding to the nanoparticle surfaces, leading to activation of the complement system. In this study, we investigated the consequences and mechanisms of complement activation by anti-PEG antibodies interacting with different types of PEGylated lipid-based nanoparticles. By using both liposomes loaded with different (model) drugs and LNPs loaded with mRNA, we demonstrate that complement activation triggered by anti-PEG antibodies can compromise the bilayer/surface integrity, leading to premature drug release or exposure of their mRNA contents to serum proteins. Anti-PEG antibodies also can induce deposition of complement fragments onto the surface of PEGylated lipid-based nanoparticles and induce the release of fluid phase complement activation products. The role of the different complement pathways activated by lipid-based nanoparticles was studied using deficient sera and/or inhibitory antibodies. We identified a major role for the classical complement pathway in the early activation events leading to the activation of C3. Our data also confirm the essential role of amplification of C3 activation by alternative pathway components in the lysis of liposomes. Finally, the levels of pre-existing anti-PEG IgM antibodies in plasma of healthy donors correlated with the degree of complement activation (fixation and lysis) induced upon exposure to PEGylated liposomes and mRNA-LNPs. Taken together, anti-PEG antibodies trigger complement activation by PEGylated lipid-based nanoparticles, which can potentially compromise their integrity, leading to premature drug release or cargo exposure to serum proteins.


Asunto(s)
Liposomas , Nanopartículas , Proteínas del Sistema Complemento , Lípidos , Liposomas/química , Nanopartículas/química , Polietilenglicoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...