Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Water Resour Assoc ; 57(3): 493-504, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35450168

RESUMEN

Hydraulic conductivity (K) is a key hydrologic parameter widely recognized to be difficult to estimate and constrain, with little consistent assessment in disturbed, urbanized soils. To estimate K, it is either measured, or simulated by pedotransfer functions, which relate K to easily measured soil properties. We measured K in urbanized soils by double-ring infiltrometer (K dring), near-saturated tension infiltrometry (K minidisk), and constant head borehole permeametry (K borehole), along with other soil properties across the major soil orders in 12 United States cities. We compared measured K with that predicted from the pedotransfer function, ROSETTA. We found that regardless of soil texture, K dring was consistently larger than K minidisk; with the latter having slightly less sample variance. K borehole was dependent upon specific subsurface conditions, and contrary to common expectations, did not always decrease with depth. Based on either soil textural class, or percent textural separates (sand, silt clay), ROSETTA did not accurately predict measured K for surface nor subsurface soils. We go on to discuss how K varies in urban landscapes, the role of measurement methods and artifacts in the perception of this metric, and implications for hydrologic modeling. Overall, we aim to inspire consistency and coherence when addressing K-related challenges in sustainable urban water management.

2.
Environ Res Lett ; 15(11)2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33628329

RESUMEN

Urban development has driven extensive modification of the global landscape. This shift in land use and land cover alters ecological functioning, and thereby affects sustainable management agendas. Urbanization fundamentally reshapes the soils that underlay landscapes, and throughout the soil profile, extends impacts of urbanization far below the landscape surface. The impacts of urbanization on deeper soils that are beyond the reach of regular land management are largely unknown, and validation of general theories of convergent ecosystem properties are thwarted by a dearth of both level of measurement effort and the substantial heterogeneity in soils and urban landscapes. Here, we examined two soil properties with strong links to ecological functioning-carbon and mineral-fraction particle size-measured in urban soils, and compared them to their pre-urbanization conditions across a continental gradient encompassing global soil diversity. We hypothesized that urbanization drove convergence of soils properties from heterogeneous pre-urban conditions towards homogeneous urban conditions. Based on our observations, we confirm the hypothesis. Both soil carbon and particle size converged toward an intermediate value in the full data distribution, from pre-urban to urban conditions. These outcomes in urban soils were observed to uniformly be fine textured soils with overall lower carbon content. Although these properties are desirable for supporting urban infrastructure (e.g. buildings, pipes), they constrain the potential to render ecosystem services. Since soil profile texture and carbon content were convergent and observed across 11 cities, we suggest that these property profiles can be used as a universal urban soil profile to: 1) provide a clear prediction for how urbanization will shift soil properties from pre-urban conditions, 2) facilitate the adoption of commonly-accepted soil profiles for process models, and 3) offer a reference point to test against urban management strategies and how they impact soil resources.

3.
Hydrol Process ; 33(26): 3349-3363, 2019 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-32831472

RESUMEN

Uncontrolled overland flow drives flooding, erosion, and contaminant transport, with the severity of these outcomes often amplified in urban areas. In pervious media such as urban soils, overland flow is initiated via either infiltration-excess (where precipitation rate exceeds infiltration capacity) or saturation-excess (when precipitation volume exceeds soil profile storage) mechanisms. These processes call for different management strategies, making it important for municipalities to discern between them. In this study, we derived a generalized one-dimensional model that distinguishes between infiltration-excess overland flow (IEOF) and saturation-excess overland flow (SEOF) using Green-Ampt infiltration concepts. Next, we applied this model to estimate overland flow generation from pervious areas in 11 U.S. cities. We used rainfall forcing that represented low- and high-intensity events and compared responses among measured urban versus predevelopment reference soil hydraulic properties. The derivation showed that the propensity for IEOF versus SEOF is related to the equivalence between two nondimensional ratios: (a) precipitation rate to depth-weighted hydraulic conductivity and (b) depth of soil profile restrictive layer to soil capillary potential. Across all cities, reference soil profiles were associated with greater IEOF for the high-intensity set of storms, and urbanized soil profiles tended towards production of SEOF during the lower intensity set of storms. Urban soils produced more cumulative overland flow as a fraction of cumulative precipitation than did reference soils, particularly under conditions associated with SEOF. These results will assist cities in identifying the type and extent of interventions needed to manage storm water produced from pervious areas.

4.
Cities Environ ; 11(1): 1-15, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30275925

RESUMEN

As cities are largely private systems, recent investigations have assessed the provision of ecosystem services from the private realm. However, these assessments are largely based on the concept of ownership and fail to capture the complexity of service provision mediated by interactions between people and ecological structures. In fact, people interact with ecological structures in their role of land tenants and stewards, further modulating the provision of ecosystem services. We devise a theoretical framework based on the concepts of ownership, tenancy, and stewardship, in which people, as mediators of ecosystem services, regulate the provision of services throughout the private-social-public domain. We survey relevant literature describing these dimensions and propose a comprehensive framework focused on the private-social-public domain. Our framework can advance ecosystem service research and enhance the provision of ecosystems services. The inclusion of people's individual, social and public roles in the mediation of ecosystem services could improve how benefits are planned for, prioritized, and optimized across cities.

5.
Proc Natl Acad Sci U S A ; 115(26): 6751-6755, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29891715

RESUMEN

Soils support terrestrial ecosystem function and therefore are critical urban infrastructure for generating ecosystem services. Urbanization processes modify ecosystem function by changing the layers of soils identified as soil horizons. Soil horizons are integrative proxies for suites of soil properties and as such can be used as an observable unit to track modifications within soil profiles. Here, in an analysis of 11 cities representing 10 of the 12 soil orders, we show that urban soils have ∼50% fewer soil horizons than preurban soils. Specifically, B horizons were much less common in urban soils and were replaced by a deepening of A horizons and a shallowing of C horizons. This shift is likely due to two processes: (i) local management, i.e., soil removal, mixing, and fill additions, and (ii) soil development timelines, i.e., urbanized soils are young and have had short time periods for soil horizon development since urbanization (decades to centuries) relative to soil formation before urbanization (centuries to millennia). Urban soils also deviated from the standard A-B-C horizon ordering at a much greater frequency than preurban soils. Overall, our finding of common shifts in urban soil profiles across soil orders and cities suggests that urban soils may function differently from their preurban antecedents. This work introduces a basis for improving our understanding of soil modifications by urbanization and its potential effects on ecosystem functioning and thereby has implications for ecosystem services derived from urban landscapes.


Asunto(s)
Ecosistema , Suelo , Urbanización , Ciudades , Bases de Datos Factuales
6.
Environ Pollut ; 236: 247-256, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29414346

RESUMEN

Recent studies have indicated that urban streets can be hotspots for emissions of methane (CH4) from leaky natural gas lines, particularly in cities with older natural gas distribution systems. The objective of the current study was to determine whether leaking sewer pipes could also be a source of street-level CH4 as well as nitrous oxide (N2O) in Cincinnati, Ohio, a city with a relatively new gas pipeline network. To do this, we measured the carbon (δ13C) and hydrogen (δ2H) stable isotopic composition of CH4 to distinguish between biogenic CH4 from sewer gas and thermogenic CH4 from leaking natural gas pipelines and measured CH4 and N2O flux rates and concentrations at sites from a previous study of street-level CH4 enhancements (77 out of 104 sites) as well as additional sites found through surveying sewer grates and utility manholes (27 out of 104 sites). The average isotopic signatures for δ13C-CH4 and δ2H-CH4 were -48.5‰ ± 6.0‰ and -302‰ ± 142‰. The measured flux rates ranged from 0.0 to 282.5 mg CH4 day-1 and 0.0-14.1 mg N2O day-1 (n = 43). The average CH4 and N2O concentrations measured in our study were 4.0 ±â€¯7.6 ppm and 392 ±â€¯158 ppb, respectively (n = 104). 72% of sites where fluxes were measured were a source of biogenic CH4. Overall, 47% of the sampled sites had biogenic CH4, while only 13% of our sites had solely thermogenic CH4. The other sites were either a source of both biogenic and thermogenic CH4 (13%), and a relatively large portion of sites had an unresolved source (29%). Overall, this survey of emissions across a large urban area indicates that production and emission of biogenic CH4 and N2O is considerable, although CH4 fluxes are lower than those reported for cities with leaky natural gas distribution systems.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Metano/análisis , Óxido Nitroso/análisis , Administración de Residuos/métodos , Aguas Residuales/química , Ciudades , Gas Natural/análisis , Ohio
7.
Environ Sci Technol ; 51(9): 5222-5232, 2017 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-28397486

RESUMEN

Nano-enabled products are ultimately destined to reach end-of-life with an important fraction undergoing thermal degradation through waste incineration or accidental fires. Although previous studies have investigated the physicochemical properties of released lifecycle particulate matter (called LCPM) from thermal decomposition of nano-enabled thermoplastics, critical questions about the effect of nanofiller on the chemical composition of LCPM still persist. Here, we investigate the potential nanofiller effects on the profiles of 16 Environmental Protection Agency (EPA)-priority polycyclic aromatic hydrocarbons (PAHs) adsorbed on LCPM from thermal decomposition of nano-enabled thermoplastics. We found that nanofiller presence in thermoplastics significantly enhances not only the total PAH concentration in LCPM but most importantly also the high molecular weight (HMW, 4-6 ring) PAHs that are considerably more toxic than the low molecular weight (LMW, 2-3 ring) PAHs. This nano-specific effect was also confirmed during in vitro cellular toxicological evaluation of LCPM for the case of polyurethane thermoplastic enabled with carbon nanotubes (PU-CNT). LCPM from PU-CNT shows significantly higher cytotoxicity compared to PU which could be attributed to its higher HMW PAH concentration. These findings are crucial and make the case that nanofiller presence in thermoplastics can significantly affect the physicochemical and toxicological properties of LCPM released during thermal decomposition.


Asunto(s)
Nanotubos de Carbono , Hidrocarburos Policíclicos Aromáticos , Salud Ambiental , Monitoreo del Ambiente , Nanopartículas , Material Particulado
8.
Environ Sci Nano ; 4(11): 2144-2156, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30197786

RESUMEN

Recent studies have shown that engineered nanoparticles (ENPs) are incorporated into toner powder used in printing equipment and released during their use. Thus, understanding the functional and structural composition and potential synergistic effects of this complex aerosol and released gaseous co-pollutants is critical in assessing their potential toxicological implications and risks. In this study, toner powder and PEPs were thoroughly examined for functional and molecular composition of the organic fraction and the concentration profile of 16 Environmental Protection Agency (EPA)-priority polycyclic aromatic hydrocarbons (PAH) using state of the art analytical methods. Results show significant differences in abundance of non-exchangeable organic hydrogen of toner powder and PEPs, with a stronger aromatic spectral signature in PEPs. Changes in structural composition of PEPs are indicative of radical additions and free-radical polymerization favored by catalytic reactions, resulting in formation of functionalized organic species. Particularly, accumulation of aromatic carbons with strong styrene-like molecular signatures on PEPs is associated with formation of semivolatile heavier aromatic species (i.e., PAHs). Further, the transformation of low molecular weight PAHs in the toner powder to high molecular weight PAHs in PEPs was documented and quantified. This may be a result of synergistic effects from catalytic metal/metal oxide ENPs incorporated into the toner and the presence/release of semi-volatile organic species (SVOCs). The presence of known carcinogenic PAHs on PEPs raises public health concerns and warrants further toxicological assessment.

9.
Infrastructures (Basel) ; 2(3)2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-32832712

RESUMEN

Infiltrative rain gardens can add retention capacity to sewersheds, yet factors contributing to their capacity for detention and redistribution of stormwater runoff are dynamic and often unverified. Over a four-year period, we tracked whole-system water fluxes in a two-tier rain garden network and assessed near-surface hydrology and soil development across construction and operational phases. The monitoring data provided a quantitative basis for determining effectiveness of this stormwater control measure. Based on 233 monitored warm-season rainfall events, nearly half of total inflow volume was detained, with 90 percent of all events producing no flow to the combined sewer. For the events that did result in flow to the combined sewer system, the rain garden delayed flows for an average of 5.5 h. Multivariate analysis of hydrologic fluxes indicated that total event rainfall depth was a predominant hydrologic driver for network outflow during both phases, with average event intensity and daily evapotranspiration as additional, independent factors in regulating retention in the operational phase. Despite sediment loads that can clog the rooting zone, and overall lower-than-design infiltration rates, tradeoffs among soil profile development and hydrology apparently maintained relatively high overall retention effectiveness. Overall, our study identified factors relevant to regulation of retention capacity of a rain garden network. These factors may be generalizable, and guide improvement of new or existing rain garden designs.

10.
Environ Sci Technol ; 49(24): 14383-91, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26562065

RESUMEN

Nonpoint source pollution (NPS) such as stormwater runoff may introduce high loads of bacteria, impairing surface water bodies. The existing filter materials in stormwater best management practices (BMP) are typically not designed to inactivate bacteria. Herein, novel filtration media were extensively tested for microbial load reduction in stormwater runoff. Red cedar wood chips (RC) were amended with different loadings of either 3-(trihydroxysilyl) propyldimethyloctadecyl ammonium chloride (TPA) or silver nanoparticles (AgNP). Under batch conditions at 25 °C, log10 removal values (LRV) up to 3.71 ± 0.38 (mean ± standard error) for TPA-RC and 2.25 ± 1.00 for AgNP-RC were achieved for Escherichia coli (E. coli), whereas unmodified RC achieved less than 0.5 LRV. Similar trends were observed at 17.5 °C, however at low temperature (10 °C) no statistically significant difference in E. coli inactivation between modified and unmodified RC was detected. Inactivation kinetic studies show that TPA-RC has higher inactivation rate constants compared to AgNP-RC. Under dynamic flow conditions a mass balance approach indicates that even after remobilization up to 99.8% of E. coli removal using 9 mg/g TPA-RC compared to 64.8% for unmodified RC. This study demonstrates that RC wood chips amended with antimicrobial compounds show promising applications as filtration material for the reduction of microbiological contamination load in stormwater runoff.


Asunto(s)
Antiinfecciosos/farmacología , Contaminación Ambiental/análisis , Escherichia coli/efectos de los fármacos , Cupressaceae/química , Cupressaceae/ultraestructura , Filtración , Cinética , Viabilidad Microbiana/efectos de los fármacos , Porosidad , Plata , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...