Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(8)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37112132

RESUMEN

In photographs of evidence in forensic investigations, physical size references (e.g., rulers or stickers) are often placed next to a trace to allow us to take measurements from photos. However, this is laborious and introduces contamination risks. The FreeRef-1 system is a contactless size reference system that allows us to take forensic photographs without having to be close to the evidence, and allows photographing under large angles without losing accuracy. The FreeRef-1 system performance was assessed using technical verification tests, inter-observer checks and user tests with forensic professionals. The results show that the measurements taken with photos using the FreeRef-1 system were at least as accurate as those taken using conventional techniques. Furthermore, with the FreeRef-1 system, even photographs taken under strongly oblique angles provided accurate measurements. The results suggest that the FreeRef-1 system will facilitate photographing evidence even in hard-to-reach places, such as under tables and on walls and ceilings, while increasing the accuracy and speed.

2.
Forensic Sci Int ; 306: 110060, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31785511

RESUMEN

In order to investigate potential causal relations between the shaking of infants and injuries, biomechanical studies compare brain and skull dynamic behavior during shaking to injury thresholds. However, performing shaking tolerance research on infants, either in vivo or ex vivo, is extremely difficult, if not impossible. Therefore, infant injury thresholds are usually estimated by scaling or extrapolating adult or animal data obtained from crash tests or whiplash experiments. However, it is doubtful whether such data accurately matches the biomechanics of shaking in an infant. Hence some thresholds may be inappropriate to be used for the assessment of inflicted head injury by shaking trauma in infants. A systematic literature review was conducted to 1) provide an overview of existing thresholds for head- and neck injuries related to violent shaking, and 2) to identify and discuss which thresholds have been used or could be used for the assessment of inflicted head injury by shaking trauma in infants. Key findings: The majority of studies establishing or proposing injury thresholds were found to be based on loading cycle durations and loading cycle repetitions that did not resemble those occurring during shaking, or had experimental conditions that were insufficiently documented in order to evaluate the applicability of such thresholds. Injury thresholds that were applied in studies aimed at assessing whether an injury could occur under certain shaking conditions were all based on experiments that did not properly replicate the loading characteristics of shaking. Somewhat validated threshold scaling methods only exist for scaling concussive injury thresholds from adult primate to adult human. Scaling methods that have been used for scaling other injuries, or for scaling adult injury thresholds to infants were not validated. There is a clear and urgent need for new injury thresholds established by accurately replicating the loading characteristics of shaking.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Síndrome del Bebé Sacudido/fisiopatología , Aceleración , Animales , Lesión Axonal Difusa/fisiopatología , Medicina Legal/métodos , Traumatismos Cerrados de la Cabeza/fisiopatología , Humanos , Lactante , Hemorragias Intracraneales/fisiopatología , Modelos Biológicos , Traumatismos del Cuello/fisiopatología , Hemorragia Retiniana/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...