Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neural Netw ; 154: 283-302, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35917665

RESUMEN

Conflictual cues and unexpected changes in human real-case scenarios may be detrimental to the execution of tasks by artificial agents, thus affecting their performance. Meta-learning applied to reinforcement learning may enhance the design of control algorithms, where an outer learning system progressively adjusts the operation of an inner learning system, leading to practical benefits for the learning schema. Here, we developed a brain-inspired meta-learning framework for inhibition cognitive control that i) exploits the meta-learning principles in the neuromodulation theory proposed by Doya, ii) relies on a well-established neural architecture that contains distributed learning systems in the human brain, and iii) proposes optimization rules of meta-learning hyperparameters that mimic the dynamics of the major neurotransmitters in the brain. We tested an artificial agent in inhibiting the action command in two well-known tasks described in the literature: NoGo and Stop-Signal Paradigms. After a short learning phase, the artificial agent learned to react to the hold signal, and hence to successfully inhibit the motor command in both tasks, via the continuous adjustment of the learning hyperparameters. We found a significant increase in global accuracy, right inhibition, and a reduction in the latency time required to cancel the action process, i.e., the Stop-signal reaction time. We also performed a sensitivity analysis to evaluate the behavioral effects of the meta-parameters, focusing on the serotoninergic modulation of the dopamine release. We demonstrated that brain-inspired principles can be integrated into artificial agents to achieve more flexible behavior when conflictual inhibitory signals are present in the environment.


Asunto(s)
Dopamina , Refuerzo en Psicología , Encéfalo , Cognición , Dopamina/fisiología , Humanos , Aprendizaje/fisiología
2.
Front Neurorobot ; 16: 843108, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812785

RESUMEN

Biological agents are context-dependent systems that exhibit behavioral flexibility. The internal and external information agents process, their actions, and emotions are all grounded in the context within which they are situated. However, in the field of cognitive robotics, the concept of context is far from being clear with most studies making little to no reference to it. The aim of this paper is to provide an interpretation of the notion of context and its core elements based on different studies in natural agents, and how these core contextual elements have been modeled in cognitive robotics, to introduce a new hypothesis about the interactions between these contextual elements. Here, global context is categorized as agent-related, environmental, and task-related context. The interaction of their core elements, allows agents to first select self-relevant tasks depending on their current needs, or for learning and mastering their environment through exploration. Second, to perform a task and continuously monitor its performance. Third, to abandon a task in case its execution is not going as expected. Here, the monitoring of prediction error, the difference between sensorimotor predictions and incoming sensory information, is at the core of behavioral flexibility during situated action cycles. Additionally, monitoring prediction error dynamics and its comparison with the expected reduction rate should indicate the agent its overall performance on executing the task. Sensitivity to performance evokes emotions that function as the driving element for autonomous behavior which, at the same time, depends on the processing of the interacting core elements. Taking all these into account, an interactionist model of contexts and their core elements is proposed. The model is embodied, affective, and situated, by means of the processing of the agent-related and environmental core contextual elements. Additionally, it is grounded in the processing of the task-related context and the associated situated action cycles during task execution. Finally, the model proposed here aims to guide how artificial agents should process the core contextual elements of the agent-related and environmental context to give rise to the task-related context, allowing agents to autonomously select a task, its planning, execution, and monitoring for behavioral flexibility.

3.
Neural Comput ; 33(5): 1402-1432, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-34496394

RESUMEN

Predictive processing has become an influential framework in cognitive sciences. This framework turns the traditional view of perception upside down, claiming that the main flow of information processing is realized in a top-down, hierarchical manner. Furthermore, it aims at unifying perception, cognition, and action as a single inferential process. However, in the related literature, the predictive processing framework and its associated schemes, such as predictive coding, active inference, perceptual inference, and free-energy principle, tend to be used interchangeably. In the field of cognitive robotics, there is no clear-cut distinction on which schemes have been implemented and under which assumptions. In this letter, working definitions are set with the main aim of analyzing the state of the art in cognitive robotics research working under the predictive processing framework as well as some related nonrobotic models. The analysis suggests that, first, research in both cognitive robotics implementations and nonrobotic models needs to be extended to the study of how multiple exteroceptive modalities can be integrated into prediction error minimization schemes. Second, a relevant distinction found here is that cognitive robotics implementations tend to emphasize the learning of a generative model, while in nonrobotics models, it is almost absent. Third, despite the relevance for active inference, few cognitive robotics implementations examine the issues around control and whether it should result from the substitution of inverse models with proprioceptive predictions. Finally, limited attention has been placed on precision weighting and the tracking of prediction error dynamics. These mechanisms should help to explore more complex behaviors and tasks in cognitive robotics research under the predictive processing framework.


Asunto(s)
Cognición , Robótica , Aprendizaje
4.
Conscious Cogn ; 93: 103155, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34130210

RESUMEN

The notion that self-disorders are at the root of the emergence of schizophrenia rather than a symptom of the disease, is getting more traction in the cognitive sciences. This is in line with philosophical approaches that consider an enactive self, constituted through action and interaction with the environment. We thereby analyze different definitions of the self and evaluate various computational theories lending to these ideas. Bayesian and predictive processing are promising approaches for computational modeling of the "active self". We evaluate their implementation and challenges in computational psychiatry and cognitive developmental robotics. We describe how and why embodied robotic systems provide a valuable tool in psychiatry to assess, validate, and simulate mechanisms of self-disorders. Specifically, mechanisms involving sensorimotor learning, prediction, and self-other distinction, can be assessed with artificial agents. This link can provide essential insights to the formation of the self and new avenues in the treatment of psychiatric disorders.


Asunto(s)
Esquizofrenia , Teorema de Bayes , Cognición , Simulación por Computador , Humanos , Aprendizaje
5.
Front Psychol ; 12: 530560, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33967869

RESUMEN

Creativity is intrinsic to Humanities and STEM disciplines. In the activities of artists and engineers, for example, an attempt is made to bring something new into the world through counterfactual thinking. However, creativity in these disciplines is distinguished by differences in motivations and constraints. For example, engineers typically direct their creativity toward building solutions to practical problems, whereas the outcomes of artistic creativity, which are largely useless to practical purposes, aspire to enrich the world aesthetically and conceptually. In this essay, an artist (DHS) and a roboticist (GS) engage in a cross-disciplinary conceptual analysis of the creative problem of artificial consciousness in a robot, expressing the counterfactual thinking necessitated by the problem, as well as disciplinary differences in motivations, constraints, and applications. We especially deal with the question of why one would build an artificial consciousness and we consider how an illusionist theory of consciousness alters prominent ethical debates on synthetic consciousness. We discuss theories of consciousness and their applicability to synthetic consciousness. We discuss practical approaches to implementing artificial consciousness in a robot and conclude by considering the role of creativity in the project of developing an artificial consciousness.

6.
Front Neurorobot ; 14: 5, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32153380

RESUMEN

Traditionally investigated in philosophy, body ownership and agency-two main components of the minimal self-have recently gained attention from other disciplines, such as brain, cognitive and behavioral sciences, and even robotics and artificial intelligence. In robotics, intuitive human interaction in natural and dynamic environments becomes more and more important, and requires skills such as self-other distinction and an understanding of agency effects. In a previous review article, we investigated studies on mechanisms for the development of motor and cognitive skills in robots (Schillaci et al., 2016). In this review article, we argue that these mechanisms also build the foundation for an understanding of an artificial self. In particular, we look at developmental processes of the minimal self in biological systems, transfer principles of those to the development of an artificial self, and suggest metrics for agency and body ownership in an artificial self.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...