Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mater Chem B ; 3(9): 1813-1822, 2015 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-32262254

RESUMEN

Multicomponent particles have emerged in recent years as new compartmentalized colloids with two sides of different chemistry or polarity that have opened up a wide field of unique applications in medicine, biochemistry, optics, physics and chemistry. A drawback of particles containing a ZnO hemisphere is their low stability in biological environment due to the amphoteric properties of Zn2+. Therefore we have synthesized monodisperse Au@ZnO Janus particles by seed-mediated nucleation and growth whose ZnO domain was coated selectively with a thin SiO2 layer as a protection from the surrounding environment that imparts stability in aqueous media while the Au domain remained untouched. The thickness of the SiO2 layer could be precisely controlled. The SiO2 coating of the oxide domain allows biomolecule conjugation (e.g. antibodies, proteins) in a single step for converting the photoluminescent and photocatalytic active Janus nanoparticles into multifunctional efficient vehicles for cell targeting. The SiO2-coated functionalized nanoparticles were stable in buffer solutions and other aqueous systems. Biocompatibility and potential biomedical applications of the Au@ZnO@SiO2 Janus particles were assayed by a cell viability analysis by co-incubating the Au@ZnO@SiO2 Janus particles with epithelia cells and compared to those of uncoated ZnO.

2.
J Am Chem Soc ; 136(6): 2473-83, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24460244

RESUMEN

Monodisperse multifunctional and nontoxic Au@MnO Janus particles with different sizes and morphologies were prepared by a seed-mediated nucleation and growth technique with precise control over domain sizes, surface functionalization, and dye labeling. The metal oxide domain could be coated selectively with a thin silica layer, leaving the metal domain untouched. In particular, size and morphology of the individual (metal and metal oxide) domains could be controlled by adjustment of the synthetic parameters. The SiO2 coating of the oxide domain allows biomolecule conjugation (e.g., antibodies, proteins) in a single step for converting the photoluminescent and superparamagnetic Janus nanoparticles into multifunctional efficient vehicles for theranostics. The Au@MnO@SiO2 Janus particles were characterized using high-resolution transmission electron microscopy (HR-)TEM, powder X-ray diffraction (PXRD), optical (UV-vis) spectroscopy, confocal laser fluorescence scanning microscopy (CLSM), and dynamic light scattering (DLS). The functionalized nanoparticles were stable in buffer solution or serum, showing no indication of aggregation. Biocompatibility and potential biomedical applications of the Au@MnO@SiO2 Janus particles were assayed by a cell viability analysis by coincubating the Au@MnO@SiO2 Janus particles with Caki 1 and HeLa cells. Time-resolved fluorescence spectroscopy in combination with CLSM revealed the silica-coated Au@MnO@SiO2 Janus particles to be highly two-photon active; no indication for an electronic interaction between the dye molecules incorporated in the silica shell surrounding the MnO domains and the attached Au domains was found; fluorescence quenching was observed when dye molecules were bound directly to the Au domains.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Nanopartículas/química , Fotones , Dióxido de Silicio/química , Transporte Biológico , Línea Celular Tumoral , Supervivencia Celular , Diagnóstico por Imagen , Células HeLa , Humanos , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
3.
Biomacromolecules ; 14(1): 193-9, 2013 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-23210706

RESUMEN

Bifunctional CA-PEG (catechol-poly(ethylene glycol)) and multifunctional CA-PEG-PGA/PEVGE (poly(glycidyl amine)/poly(ethylene glycol vinyl glycidyl ether)) ligands for the functionalization and solubilization of nanoparticles are introduced. Tunable polymers with polydispersities <1.25 and molecular weights in the range 500-7700 g mol(-1) containing a catechol moiety for conjugation to metal oxide nanoparticles were prepared. The functional PEG ligands were synthesized starting from the acetonide-protected catechol initiator 2,2-dimethyl-1,3-benzodioxole-5-propanol (CA-OH) for oxyanionic polymerization. CA-OH was used both for homopolymerization of ethylene oxide (EO) as well as copolymerization with functional epoxides N,N-diallyl glycidyl amine (DAGA), releasing primary amino groups and ethylene glycol vinyl glycidyl ether (EVGE), exhibiting a double bond for click-type reactions, to generate CA-PEG and CA-PEG-PGA/PEVGE. We demonstrate the potential of the functional ligands by binding to MnO nanoparticles, rendering the PEGylated nanoparticles highly stable in aqueous environment. Furthermore, addressability of the functional groups has been proven, for example, by coupling with fluoresceine isothiocyanate (FITC), to allow for optical monitoring of the nanoparticle fate in biological systems.


Asunto(s)
Catecoles/química , Compuestos Epoxi/química , Nanopartículas del Metal/química , Polietilenglicoles/química , Catecoles/análisis , Compuestos Epoxi/análisis , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Nanopartículas del Metal/análisis , Polietilenglicoles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...