Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Biotechnol J ; 22(2): 401-412, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37864303

RESUMEN

The ErCas12a nuclease, also known as MAD7, is part of a CRISPR/Cas system from Eubacterium rectale and distantly related to Cas12a nucleases. As it shares only 31% sequence homology with the commonly used AsCas12a, its intellectual property may not be covered by the granted patent rights for Cas12a nucleases. Thus, ErCas12a became an attractive alternative for practical applications. However, the editing efficiency of ErCas12a is strongly target sequence- and temperature-dependent. Therefore, optimization of the enzyme activity through protein engineering is especially attractive for its application in plants, as they are cultivated at lower temperatures. Based on the knowledge obtained from the optimization of Cas12a nucleases, we opted to improve the gene editing efficiency of ErCas12a by introducing analogous amino acid exchanges. Interestingly, neither of these mutations analogous to those in the enhanced or Ultra versions of AsCas12a resulted in significant editing enhancement of ErCas12a in Arabidopsis thaliana. However, two different mutations, V156R and K172R, in putative alpha helical structures of the enzyme showed a detectable improvement in editing. By combining these two mutations, we obtained an improved ErCas12a (imErCas12a) variant, showing several-fold increase in activity in comparison to the wild-type enzyme in Arabidopsis. This variant yields strong editing efficiencies at 22 °C which could be further increased by raising the cultivation temperature to 28 °C and even enabled editing of formerly inaccessible targets. Additionally, no enhanced off-site activity was detected. Thus, imErCas12a is an economically attractive and efficient alternative to other CRISPR/Cas systems for plant genome engineering.


Asunto(s)
Arabidopsis , Edición Génica , Arabidopsis/metabolismo , Sistemas CRISPR-Cas/genética , Endonucleasas/genética
2.
Plant J ; 118(1): 277-287, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38113345

RESUMEN

Previously, it has been shown that mutagenesis frequencies can be improved by directly fusing the human exonuclease TREX2 to Cas9, resulting in a strong increase in the frequency of smaller deletions at the cut site. Here, we demonstrate that, by using the SunTag system for recruitment of TREX2, the mutagenesis efficiency can be doubled in comparison to the direct fusion in Arabidopsis thaliana. Therefore, we also tested the efficiency of the system for targeted deletion formation by recruiting two other 3'-5' exonucleases, namely the human TREX1 and E. coli ExoI. It turns out that SunTag-mediated recruitment of TREX1 not only improved the general mutation induction efficiency slightly in comparison to TREX2, but that, more importantly, the mean size of the induced deletions was also enhanced, mainly via an increase of deletions of 25 bp or more. EcExoI also yielded a higher amount of larger deletions. However, only in the case of TREX1 and TREX2, the effect was predominately SunTag-dependent, indicating efficient target-specific recruitment. Using SunTag-mediated TREX1 recruitment at other genomic sites, we were able to obtain similar deletion patterns. Thus, we were able to develop an attractive novel editing tool that is especially useful for obtaining deletions in the range from 20 to 40 bp around the cut site. Such sizes are often required for the manipulation of cis-regulatory elements. This feature is closing an existing gap as previous approaches, based on single nucleases or paired nickases or nucleases, resulted in either shorter or longer deletions, respectively.


Asunto(s)
Sistemas CRISPR-Cas , Escherichia coli , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Mutagénesis , Mutación , Desoxirribonucleasa I/genética , Desoxirribonucleasa I/metabolismo , Edición Génica
4.
Curr Opin Biotechnol ; 79: 102854, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36455451

RESUMEN

Since their first adaptation for plant genome editing, clustered regularly interspaced short palindromic repeats/CRISPR-associated system nucleases and tools have revolutionized the field. While early approaches focused on targeted mutagenesis that relies on mutagenic repair of induced double-strand breaks, newly developed tools now enable the precise induction of predefined modifications. Constant efforts to optimize these tools have led to the generation of more efficient base editors with enlarged editing windows and have enabled previously unachievable C-G transversions. Prime editors were also optimized for the application in plants and now allow to accurately induce substitutions, insertions, and deletions. Recently, great progress was made through precise restructuring of chromosomes, which enables not only the breakage or formation of genetic linkages but also the swapping of promoters.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Genoma de Planta/genética , Mutagénesis/genética , Endonucleasas/genética , Endonucleasas/metabolismo , Plantas/genética , Plantas/metabolismo , Ingeniería Genética
5.
Nat Plants ; 8(10): 1153-1159, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36109610

RESUMEN

Recent studies have demonstrated that not only genes but also entire chromosomes can be engineered using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPER-associated protein 9 (Cas9)1-5. A major objective of applying chromosome restructuring in plant breeding is the manipulation of genetic exchange6. Here we show that meiotic recombination can be suppressed in nearly the entire chromosome using chromosome restructuring. We were able to induce a heritable inversion of a >17 Mb-long chromosome fragment that contained the centromere and covered most of chromosome 2 of the Arabidopsis ecotype Col-0. Only the 2 and 0.5 Mb-long telomeric ends remained in their original orientation. In single-nucleotide polymorphism marker analysis of the offspring of crosses with the ecotype Ler-1, we detected a massive reduction of crossovers within the inverted chromosome region, coupled with a shift of crossovers to the telomeric ends. The few genetic exchanges detected within the inversion all originated from double crossovers. This not only indicates that heritable genetic exchange can occur by interstitial chromosome pairing, but also that it is restricted to the production of viable progeny.


Asunto(s)
Arabidopsis , Cromosomas de las Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Cromosomas de las Plantas/genética , Sistemas CRISPR-Cas , Fitomejoramiento
6.
Nat Protoc ; 17(5): 1332-1358, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35388178

RESUMEN

The rise of the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) system has made it possible to induce double-strand breaks at almost any desired target site in the genome. In plant somatic cells, double-strand breaks are predominantly repaired by the error-prone nonhomologous end-joining pathway, which can lead to mutations at the break site upon repair. So far, it had only been possible to induce genomic changes of up to a few hundred kilobases in plants utilizing this mechanism. However, by combining the highly efficient Staphylococcus aureus Cas9 (SaCas9) with an egg-cell-specific promoter to facilitate heritable mutations, chromosomal rearrangements in the Mb range, such as inversion and translocations, were obtained in Arabidopsis thaliana recently. Here we describe the chromosome-engineering protocol used to generate these heritable chromosomal rearrangements in A. thaliana. The protocol is based on Agrobacterium-mediated transformation of A. thaliana with transfer DNA constructs containing SaCas9, which is driven by an egg-cell-specific promoter, and two guide RNAs that have been preselected based on their cutting efficiency. In the T1 generation, primary transformants are selected and, if required, analyzed by Droplet Digital PCR and propagated. In the following generations, junction-specific PCR screenings are carried out until plants that carry the rearrangement homozygously are identified. Using this protocol, overall rearrangement frequencies range between 0.03% and 0.5%, depending on the type of rearrangement. In total, it takes about 1 year to establish homozygous lines.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Sistemas CRISPR-Cas/genética , Cromosomas , Edición Génica/métodos , Mutación , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo
7.
Plant Cell ; 33(11): 3454-3469, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34375428

RESUMEN

In nature, single-strand breaks (SSBs) in DNA occur more frequently (by orders of magnitude) than double-strand breaks (DSBs). SSBs induced by the CRISPR/Cas9 nickase at a distance of 50-100 bp on opposite strands are highly mutagenic, leading to insertions/deletions (InDels), with insertions mainly occurring as direct tandem duplications. As short tandem repeats are overrepresented in plant genomes, this mechanism seems to be important for genome evolution. We investigated the distance at which paired 5'-overhanging SSBs are mutagenic and which DNA repair pathways are essential for insertion formation in Arabidopsis thaliana. We were able to detect InDel formation up to a distance of 250 bp, although with much reduced efficiency. Surprisingly, the loss of the classical nonhomologous end joining (NHEJ) pathway factors KU70 or DNA ligase 4 completely abolished tandem repeat formation. The microhomology-mediated NHEJ factor POLQ was required only for patch-like insertions, which are well-known from DSB repair as templated insertions from ectopic sites. As SSBs can also be repaired using homology, we furthermore asked whether the classical homologous recombination (HR) pathway is involved in this process in plants. The fact that RAD54 is not required for homology-mediated SSB repair demonstrates that the mechanisms for DSB- and SSB-induced HR differ in plants.


Asunto(s)
Arabidopsis/genética , Roturas del ADN de Cadena Simple , Reparación del ADN , ADN de Plantas/genética , Genoma de Planta , ADN de Plantas/química
8.
Nat Plants ; 7(5): 566-573, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33958776

RESUMEN

Plant breeding relies on the presence of genetic variation, as well as on the ability to break or stabilize genetic linkages between traits. The development of the genome-editing tool clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) has allowed breeders to induce genetic variability in a controlled and site-specific manner, and to improve traits with high efficiency. However, the presence of genetic linkages is a major obstacle to the transfer of desirable traits from wild species to their cultivated relatives. One way to address this issue is to create mutants with deficiencies in the meiotic recombination machinery, thereby enhancing global crossover frequencies between homologous parental chromosomes. Although this seemed to be a promising approach at first, thus far, no crossover frequencies could be enhanced in recombination-cold regions of the genome. Additionally, this approach can lead to unintended genomic instabilities due to DNA repair defects. Therefore, efforts have been undertaken to obtain predefined crossovers between homologues by inducing site-specific double-strand breaks (DSBs) in meiotic, as well as in somatic plant cells using CRISPR-Cas tools. However, this strategy has not been able to produce a substantial number of heritable homologous recombination-based crossovers. Most recently, heritable chromosomal rearrangements, such as inversions and translocations, have been obtained in a controlled way using CRISPR-Cas in plants. This approach unlocks a completely new way of manipulating genetic linkages, one in which the DSBs are induced in somatic cells, enabling the formation of chromosomal rearrangements in the megabase range, by DSB repair via non-homologous end-joining. This technology might also enable the restructuring of genomes more globally, resulting in not only the obtainment of synthetic plant chromosome, but also of novel plant species.


Asunto(s)
Sistemas CRISPR-Cas , Cromosomas de las Plantas/genética , Producción de Cultivos , Ingeniería Genética/métodos , Plantas Modificadas Genéticamente/genética , Biología Sintética , Producción de Cultivos/métodos , Productos Agrícolas/genética , Biología Sintética/métodos
9.
Plant Biotechnol J ; 19(7): 1314-1324, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33511745

RESUMEN

Nicotiana tabacum is a non-food herb that has the potential to be utilized as bio-factory for generating medicines, vaccines or valuable small metabolites. To achieve these goals, the improvement of genetic tools for pre-designed genome modifications is indispensable. The development of CRISPR/Cas nucleases allows the induction of site-specific double-strand breaks to enhance homologous recombination-mediated gene targeting (GT). However, the efficiency of GT is still a challenging obstacle for many crops including tobacco. Recently, studies in several plant species indicated that by replacing SpCas9 with other CRISPR/Cas-based nucleases, GT efficiencies might be enhanced considerably. Therefore, we tested SaCas9 as well as a temperature-insensitive version of LbCas12a (ttLbCas12a) for targeting the tobacco SuRB gene. At the same time, we also optimized the protocol for Agrobacterium-mediated tobacco transformation and tissue culture. In this way, we could improve GT efficiencies to up to a third of the inoculated cotyledons when using ttLbCas12a, which outperformed SaCas9 considerably. In addition, we could show that the conversion tract length of the GT reaction can be up to 606 bp long and in the majority of cases, it is longer than 250 bp. We obtained multiple heritable GT events, mostly heterozygous, but also biallelic GT events and some without T-DNA integration. Thus, we were not only able to obtain CRISPR/Cas-based heritable GT events in allotetraploid Nicotiana tabacum for the first time, but our results also indicate that ttLbCas12a might be a superior alternative for gene editing and GT in tobacco as well as in other crops.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Nicotiana , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Edición Génica , Marcación de Gen , Temperatura , Nicotiana/genética
10.
J Exp Bot ; 72(2): 177-183, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33258473

RESUMEN

The advent of powerful site-specific nucleases, particularly the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system, which enables precise genome manipulation, has revolutionized plant breeding. Until recently, the main focus of researchers has been to simply knock-in or knock-out single genes, or to induce single base changes, but constant improvements of this technology have enabled more ambitious applications that aim to improve plant productivity or other desirable traits. One long-standing aim has been the induction of targeted chromosomal rearrangements (crossovers, inversions, or translocations). The feasibility of this technique has the potential to transform plant breeding, because natural rearrangements, like inversions, for example, typically present obstacles to the breeding process. In this way, genetic linkages between traits could be altered to combine or separate favorable and deleterious genes, respectively. In this review, we discuss recent breakthroughs in the field of chromosome engineering in plants and their potential applications in the field of plant breeding. In the future, these approaches might be applicable in shaping plant chromosomes in a directed manner, based on plant breeding needs.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Ingeniería Genética , Genoma de Planta , Fitomejoramiento , Plantas/genética
11.
J Plant Physiol ; 257: 153332, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33383400

RESUMEN

Over the last years, the discovery of various natural and the development of a row of engineered CRISPR/Cas nucleases have made almost every site of plant genomes accessible for the induction of specific changes. Newly developed tools open up a wide range of possibilities for the induction of genetic variability, from changing a single bp to Mbps, and thus to fine-tune plant performance. Whereas early approaches focused on targeted mutagenesis, recently developed tools enable the induction of precise and predefined genomic modifications. The use of base editors allows the substitution of single nucleotides, whereas the use of prime editors and gene targeting methods enables the induction of larger sequence modifications from a few bases to several kbp. Recently, through CRISPR/Cas-mediated chromosome engineering, it became possible to induce heritable inversions and translocations in the Mbp range. Thus, a novel way of breaking and fixing genetic linkages has come into reach for breeders. In addition, sequence-specific recruitment of various factors involved in transcriptional and post-transcriptional regulation has been shown to provide an additional class of methods for the fine tuning of plant performance. In this review, we provide an overview of the most recent progress in the field of CRISPR/Cas-based tool development for plant genome engineering and try to evaluate the importance of these developments for breeding and biotechnological applications.


Asunto(s)
Sistemas CRISPR-Cas , Ingeniería Genética , Genoma de Planta , Fitomejoramiento
12.
Front Plant Sci ; 11: 1254, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973827

RESUMEN

Development of live imaging techniques for providing information how chromatin is organized in living cells is pivotal to decipher the regulation of biological processes. Here, we demonstrate the improvement of a live imaging technique based on CRISPR/Cas9. In this approach, the sgRNA scaffold is fused to RNA aptamers including MS2 and PP7. When the dead Cas9 (dCas9) is co-expressed with chimeric sgRNA, the fluorescent coat protein-tagged for MS2 and PP7 aptamers (tdMCP-FP and tdPCP-FP) are recruited to the targeted sequence. Compared to previous work with dCas9:GFP, we show that the quality of telomere labeling was improved in transiently transformed Nicotiana benthamiana using aptamer-based CRISPR-imaging constructs. Labeling is influenced by the copy number of aptamers and less by the promoter types. The same constructs were not applicable for labeling of repeats in stably transformed plants and roots. The constant interaction of the RNP complex with its target DNA might interfere with cellular processes.

13.
Curr Protoc Plant Biol ; 5(3): e20117, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32865887

RESUMEN

CRISPR/Cas systems enable gene editing through the induction of site-specific DNA double-strand breaks (DSB). However, the nature of the induced modification highly depends on the mechanism used for DNA DSB repair. Non-homologous end joining (NHEJ)-mediated targeted mutagenesis induced by CRISPR/Cas is an already standardly applied tool, which can lead to various different kinds of mutations at a specific genomic site. Nevertheless, precise genome modification using homologous donor sequences is still challenging in plants. Applications depending on the less frequent homologous recombination (HR) require further improvements to create an attractive and efficient tool for general application in plants. Focusing on this issue, we developed the in planta gene targeting (ipGT) system, which is based on the simultaneous excision of a stably integrated, homologous donor sequence and the induction of a DSB within the target site. In recent years, several improvements were achieved enhancing gene targeting (GT) frequencies. After the successful application of Streptococcus pyogenes Cas9 (SpCas9) and Staphylococcus aureus Cas9 (SaCas9) for ipGT, we were able to further improve the system using Lachnospiraceae bacterium Cas12a (LbCas12a), which also enables cleavage in T-rich regions. Most recently, we tested an improved, temperature-tolerant version of LbCas12a (ttLbCas12a) for ipGT and were able to further increase GT efficiencies. Here, we describe the experimental procedure of the recently published ipGT system using ttLbCas12a in Arabidopsis thaliana in detail. © 2020 The Authors. Basic Protocol 1: Construction of CRISPR/ttLbCas12a expression vector to analyze ipGT efficiencies Basic Protocol 2: Achieving heritable GT plants.


Asunto(s)
Arabidopsis/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Sistemas CRISPR-Cas , Edición Génica , Marcación de Gen
14.
Methods Mol Biol ; 2166: 331-342, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32710418

RESUMEN

The simple applicability and facile target programming of the CRISPR/Cas9-system abolish the major boundaries of previous genome editing tools, making it the tool of choice for generating site-specific genome alterations. Its versatility and efficacy have been demonstrated in various organisms; however, accurately predicting guide RNA efficiencies remains an organism-independent challenge. Thus, designing optimal guide RNAs is essential to maximize the experimental outcome. Here, we summarize the current knowledge for guide RNA design and highlight discrepancies between different experimental systems.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Edición Génica/métodos , ARN Guía de Kinetoplastida/genética , Animales , Proteína 9 Asociada a CRISPR/genética , Cromatina/genética , Drosophila/genética , Genoma , Células HEK293 , Humanos , Conformación de Ácido Nucleico , Nucleótidos/química , ARN Guía de Kinetoplastida/química , Streptococcus pyogenes/enzimología
15.
Methods Mol Biol ; 2166: 343-356, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32710419

RESUMEN

Chromatin organization is highly dynamic in living cells. Therefore, it might have a regulatory role over biological mechanisms like transcription, replication, and DNA repair. To elucidate how these mechanisms are regulated, it is required to establish imaging methods to visualize the chromatin dynamic in living cells. Here, we provide a protocol for a live plant cell imaging technique based on application of two orthologs of the bacterial clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) from Streptococcus pyogenes and Staphylococcus aureus. This technique uses the inactive variants of Cas9 combined with different fluorescent proteins (GFP and mRuby) and telomere-specific guide RNA to target telomeric repeats in Nicotiana benthamiana. Our immuno-FISH data revealed that signals arising from the CRISPR/dCas9 method are specifically belonging to telomeric regions.


Asunto(s)
Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Nicotiana/citología , Células Vegetales/metabolismo , Hojas de la Planta/citología , ARN Guía de Kinetoplastida/genética , Telómero/genética , Proteína 9 Asociada a CRISPR/genética , Cromatina/genética , Cromatina/metabolismo , Sitios Genéticos , Proteínas Fluorescentes Verdes/genética , Microscopía Confocal/métodos , Staphylococcus aureus/genética , Streptococcus pyogenes/genética , Telómero/metabolismo
18.
aBIOTECH ; 1(1): 21-31, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36305002

RESUMEN

In the last years, tremendous progress has been achieved in the field of gene editing in plants. By the induction of single site-specific double-strand breaks (DSBs), the knockout of genes by non-homologous end joining has become routine in many plant species. Recently, the efficiency of inducing pre-planned mutations by homologous recombination has also been improved considerably. However, very little effort has been undertaken until now to achieve more complex changes in plant genomes by the simultaneous induction of several DSBs. Several reports have been published on the efficient induction of deletions. However, the induction of intrachromosomal inversions and interchromosomal recombination by the use of CRISPR/Cas has only recently been reported. In this review, we want to sum up these results and put them into context with regards to what is known about natural chromosome rearrangements in plants. Moreover, we review the recent progress in CRISPR/Cas-based mammalian chromosomal rearrangements, which might be inspiring for plant biologists. In the long run, the controlled restructuring of plant genomes should enable us to link or break linkage of traits at will, thus defining a new area of plant breeding.

20.
BMC Plant Biol ; 19(1): 176, 2019 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-31046670

RESUMEN

Classical plant breeding was extremely successful in generating high yielding crop varieties. Yet, in modern crops, the long domestication process has impoverished the genetic diversity available for breeding. This is limiting further improvements of elite germplasm by classical approaches. The CRISPR/Cas system now enables promising new opportunities to create genetic diversity for breeding in an unprecedented way. Due to its multiplexing ability, multiple targets can be modified simultaneously in an efficient way, enabling immediate pyramiding of multiple beneficial traits into an elite background within one generation. By targeting regulatory elements, a selectable range of transcriptional alleles can be generated, enabling precise fine-tuning of desirable traits. In addition, by targeting homologues of so-called domestication genes within one generation, it is now possible to catapult neglected, semi-domesticated and wild plants quickly into the focus of mainstream agriculture. This further enables the use of the enormous genetic diversity present in wild species or uncultured varieties of crops as a source of allele-mining, widely expanding the crop germplasm pool.


Asunto(s)
Sistemas CRISPR-Cas , Variación Genética , Fitomejoramiento , Genes de Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...