Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
J Bone Miner Res ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722812

RESUMEN

Skeletal growth, modeling and remodeling are regulated by various molecules, one of them being the recently identified osteoanabolic factor WNT1. We have previously reported that WNT1 transcriptionally activates the expression of Omd, encoding Osteomodulin (OMD), in a murine mesenchymal cell line, which potentially explained the skeletal fragility of mice with mutational WNT1 inactivation, since OMD has been shown to regulate type I collagen fibril formation in vitro. In the present study we confirmed the strong induction of Omd expression in a genome-wide expression analysis of transfected cells, and we obtained further evidence for Omd being a direct target gene of WNT1. To assess the in vivo relevance of this regulation, we crossed Omd-deficient mice with a mouse line harboring an inducible, osteoblast-specific Wnt1 transgene. After induction of Wnt1 expression for 1 or 3 weeks, the osteoanabolic potency of WNT1 was not impaired despite the Omd deficiency. Since current knowledge regarding the in vivo physiological function of OMD is limited, we next focused on skeletal phenotyping of wild-type and Omd-deficient littermates, in the absence of a Wnt1 transgene. Here we did not observe an impact of Omd deficiency on trabecular bone parameters by histomorphometry and µCT either. Importantly, however, male and female Omd-deficient mice at the ages of 12 and 24 weeks displayed a slender bone phenotype with significantly smaller long bones in the transversal dimension, while the longitudinal bone growth remained unaffected. Although mechanical testing revealed no significant changes explained by impaired bone material properties, atomic force microscopy of the femoral bone surface of Omd-deficient mice revealed moderate changes at the nanostructural level, indicating altered regulation of collagen fibril formation and aggregation. Taken together, our data demonstrate that, although OMD is dispensable for the osteoanabolic effect of WNT1, its deficiency in mice specifically modulates transversal cortical bone morphology.


We explored the physiological relevance of the protein Osteomodulin (OMD) that we previously found to be induced by the osteoanabolic molecule WNT1. While other studies have shown that OMD is involved in the regulation of collagen fibril formation in vitro, its function in vivo has not been investigated. We confirmed that OMD is directly regulated by WNT1 but surprisingly, when we bred mice lacking OMD with mice engineered to highly express WNT1, we found that the osteoanabolic effect of WNT1 was unaffected by the absence of OMD. Interestingly, mice lacking OMD did show differences in the shape of their bones, particularly in their width, despite no significant changes in bone density or length. Investigation of the bone matrix of mice lacking OMD at the nanostructural level indicated moderate differences in the organization of collagen fibrils. This study provided further insights into the effect of WNT1 on bone metabolism and highlighted a specific function of OMD in skeletal morphology.

2.
J Exp Clin Cancer Res ; 43(1): 110, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605423

RESUMEN

BACKGROUND: Metastasis is the leading cause of cancer-related death in non-small cell lung cancer (NSCLC) patients. We previously showed that low HERC5 expression predicts early tumor dissemination and a dismal prognosis in NSCLC patients. Here, we performed functional studies to unravel the mechanism underlying the "metastasis-suppressor" effect of HERC5, with a focus on mitochondrial metabolism pathways. METHODS: We assessed cell proliferation, colony formation potential, anchorage-independent growth, migration, and wound healing in NSCLC cell line models with HERC5 overexpression (OE) or knockout (KO). To study early tumor cell dissemination, we used these cell line models in zebrafish experiments and performed intracardial injections in nude mice. Mass spectrometry (MS) was used to analyze protein changes in whole-cell extracts. Furthermore, electron microscopy (EM) imaging, cellular respiration, glycolytic activity, and lactate production were used to investigate the relationships with mitochondrial energy metabolism pathways. RESULTS: Using different in vitro NSCLC cell line models, we showed that NSCLC cells with low HERC5 expression had increased malignant and invasive properties. Furthermore, two different in vivo models in zebrafish and a xenograft mouse model showed increased dissemination and metastasis formation (in particular in the brain). Functional enrichment clustering of MS data revealed an increase in mitochondrial proteins in vitro when HERC5 levels were high. Loss of HERC5 leads to an increased Warburg effect, leading to improved adaptation and survival under prolonged inhibition of oxidative phosphorylation. CONCLUSIONS: Taken together, these results indicate that low HERC5 expression increases the metastatic potential of NSCLC in vitro and in vivo. Furthermore, HERC5-induced proteomic changes influence mitochondrial pathways, ultimately leading to alterations in energy metabolism and demonstrating its role as a new potential metastasis suppressor gene.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Pez Cebra , Regulación hacia Abajo , Ratones Desnudos , Proteómica , Metabolismo Energético , Proliferación Celular , Línea Celular Tumoral , Movimiento Celular , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo
3.
Kidney Int ; 105(5): 927-929, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38642991

RESUMEN

Hereditary hypophosphatemic rickets with hypercalciuria is an autosomal recessive phosphate-wasting disorder, associated with kidney and skeletal pathologies, which is caused by pathogenic variants of SLC34A3. In this issue, Zhu et al. describe a pooled analysis of 304 individuals carrying SLC34A3 variants. Their study underscores the complexity of hereditary hypophosphatemic rickets with hypercalciuria, as kidney and bone phenotypes generally do not coexist, heterozygous carriers of SLC34A3 variants also can be affected, and the response to oral phosphate supplementation is dependent on the genetic status.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Humanos , Raquitismo Hipofosfatémico Familiar/complicaciones , Raquitismo Hipofosfatémico Familiar/diagnóstico , Raquitismo Hipofosfatémico Familiar/genética , Hipercalciuria/diagnóstico , Hipercalciuria/genética , Medicina de Precisión , Mutación , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIc/genética , Fosfatos
4.
Sci Transl Med ; 16(743): eadk9129, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630849

RESUMEN

Traumatic brain injury (TBI) leads to skeletal changes, including bone loss in the unfractured skeleton, and paradoxically accelerates healing of bone fractures; however, the mechanisms remain unclear. TBI is associated with a hyperadrenergic state characterized by increased norepinephrine release. Here, we identified the ß2-adrenergic receptor (ADRB2) as a mediator of skeletal changes in response to increased norepinephrine. In a murine model of femoral osteotomy combined with cortical impact brain injury, TBI was associated with ADRB2-dependent enhanced fracture healing compared with osteotomy alone. In the unfractured 12-week-old mouse skeleton, ADRB2 was required for TBI-induced decrease in bone formation and increased bone resorption. Adult 30-week-old mice had higher bone concentrations of norepinephrine, and ADRB2 expression was associated with decreased bone volume in the unfractured skeleton and better fracture healing in the injured skeleton. Norepinephrine stimulated expression of vascular endothelial growth factor A and calcitonin gene-related peptide-α (αCGRP) in periosteal cells through ADRB2, promoting formation of osteogenic type-H vessels in the fracture callus. Both ADRB2 and αCGRP were required for the beneficial effect of TBI on bone repair. Adult mice deficient in ADRB2 without TBI developed fracture nonunion despite high bone formation in uninjured bone. Blocking ADRB2 with propranolol impaired fracture healing in mice, whereas the ADRB2 agonist formoterol promoted fracture healing by regulating callus neovascularization. A retrospective cohort analysis of 72 patients with long bone fractures indicated improved callus formation in 36 patients treated with intravenous norepinephrine. These findings suggest that ADRB2 is a potential therapeutic target for promoting bone healing.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Fracturas Óseas , Humanos , Animales , Ratones , Curación de Fractura/fisiología , Factor A de Crecimiento Endotelial Vascular , Adrenérgicos , Estudios Retrospectivos , Lesiones Traumáticas del Encéfalo/metabolismo , Neovascularización Patológica , Norepinefrina
5.
Bone Res ; 12(1): 12, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395992

RESUMEN

Piezo proteins are mechanically activated ion channels, which are required for mechanosensing functions in a variety of cell types. While we and others have previously demonstrated that the expression of Piezo1 in osteoblast lineage cells is essential for bone-anabolic processes, there was only suggestive evidence indicating a role of Piezo1 and/or Piezo2 in cartilage. Here we addressed the question if and how chondrocyte expression of the mechanosensitive proteins Piezo1 or Piezo2 controls physiological endochondral ossification and pathological osteoarthritis (OA) development. Mice with chondrocyte-specific inactivation of Piezo1 (Piezo1Col2a1Cre), but not of Piezo2, developed a near absence of trabecular bone below the chondrogenic growth plate postnatally. Moreover, all Piezo1Col2a1Cre animals displayed multiple fractures of rib bones at 7 days of age, which were located close to the growth plates. While skeletal growth was only mildly affected in these mice, OA pathologies were markedly less pronounced compared to littermate controls at 60 weeks of age. Likewise, when OA was induced by anterior cruciate ligament transection, only the chondrocyte inactivation of Piezo1, not of Piezo2, resulted in attenuated articular cartilage degeneration. Importantly, osteophyte formation and maturation were also reduced in Piezo1Col2a1Cre mice. We further observed increased Piezo1 protein abundance in cartilaginous zones of human osteophytes. Finally, we identified Ptgs2 and Ccn2 as potentially relevant Piezo1 downstream genes in chondrocytes. Collectively, our data do not only demonstrate that Piezo1 is a critical regulator of physiological and pathological endochondral ossification processes, but also suggest that Piezo1 antagonists may be established as a novel approach to limit osteophyte formation in OA.


Asunto(s)
Cartílago Articular , Osteoartritis , Osteofito , Animales , Humanos , Ratones , Cartílago Articular/patología , Condrocitos , Canales Iónicos/genética , Osteoartritis/genética , Osteogénesis/genética , Osteofito/metabolismo
6.
FASEB J ; 38(4): e23489, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38407813

RESUMEN

Physical activity-induced mechanical stimuli play a crucial role in preserving bone mass and structure by promoting bone formation. While the Wnt pathway is pivotal for mediating the osteoblast response to loading, the exact mechanisms are not fully understood. Here, we found that mechanical stimulation induces osteoblastic Wnt1 expression, resulting in an upregulation of key osteogenic marker genes, including Runx2 and Sp7, while Wnt1 knockdown using siRNA prevented these effects. RNAseq analysis identified Plat as a major target through which Wnt1 exerts its osteogenic influence. This was corroborated by Plat depletion using siRNA, confirming its positive role in osteogenic differentiation. Moreover, we demonstrated that mechanical stimulation enhances Plat expression, which, in turn leads to increased expression of osteogenic markers like Runx2 and Sp7. Notably, Plat depletion by siRNA prevented this effect. We have established that Wnt1 regulates Plat expression by activating ß-Catenin. Silencing Wnt1 impairs mechanically induced ß-Catenin activation, subsequently reducing Plat expression. Furthermore, our findings showed that Wnt1 is essential for osteoblasts to respond to mechanical stimulation and induce Runx2 and Sp7 expression, in part through the Wnt1/ß-Catenin/Plat signaling pathway. Additionally, we observed significantly reduced Wnt1 and Plat expression in bones from ovariectomy (OVX)-induced and age-related osteoporotic mouse models compared with non-OVX and young mice, respectively. Overall, our data suggested that Wnt1 and Plat play significant roles in mechanically induced osteogenesis. Their decreased expression in bones from OVX and aged mice highlights their potential involvement in post-menopausal and age-related osteoporosis, respectively.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal , Osteogénesis , Animales , Femenino , Ratones , beta Catenina/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Osteoblastos , ARN Interferente Pequeño , Vía de Señalización Wnt , Activador de Tejido Plasminógeno/metabolismo
7.
Calcif Tissue Int ; 114(2): 171-181, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38051321

RESUMEN

Pathogenic variants disrupting the binding between sclerostin (encoded by SOST) and its receptor LRP4 have previously been described to cause sclerosteosis, a rare high bone mass disorder. The sclerostin-LRP4 complex inhibits canonical WNT signaling, a key pathway regulating osteoblastic bone formation and a promising therapeutic target for common bone disorders, such as osteoporosis. In the current study, we crossed mice deficient for Sost (Sost-/-) with our p.Arg1170Gln Lrp4 knock-in (Lrp4KI/KI) mouse model to create double mutant Sost-/-;Lrp4KI/KI mice. We compared the phenotype of Sost-/- mice with that of Sost-/-;Lrp4KI/KI mice, to investigate a possible synergistic effect of the disease-causing p.Arg1170Trp variant in Lrp4 on Sost deficiency. Interestingly, presence of Lrp4KI alleles partially mitigated the Sost-/- phenotype. Cellular and dynamic histomorphometry did not reveal mechanistic insights into the observed phenotypic differences. We therefore determined the molecular effect of the Lrp4KI allele by performing bulk RNA sequencing on Lrp4KI/KI primary osteoblasts. Unexpectedly, mostly genes related to bone resorption or remodeling (Acp5, Rankl, Mmp9) were upregulated in Lrp4KI/KI primary osteoblasts. Verification of these markers in Lrp4KI/KI, Sost-/- and Sost-/-;Lrp4KI/KI mice revealed that sclerostin deficiency counteracts this Lrp4KI/KI effect in Sost-/-;Lrp4KI/KI mice. We therefore hypothesize that models with two inactivating Lrp4KI alleles rather activate bone remodeling, with a net gain in bone mass, whereas sclerostin deficiency has more robust anabolic effects on bone formation. Moreover, these effects of sclerostin and Lrp4 are stronger in female mice, contributing to a more severe phenotype than in males and more detectable phenotypic differences among different genotypes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Remodelación Ósea , Hiperostosis , Sindactilia , Masculino , Femenino , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ratones Noqueados , Fenotipo , Mutación , Remodelación Ósea/genética , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo
8.
Bone ; 177: 116927, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37797712

RESUMEN

Missense variants in the MBTPS2 gene, located on the X chromosome, have been associated with an X-linked recessive form of osteogenesis imperfecta (X-OI), an inherited bone dysplasia characterized by multiple and recurrent bone fractures, short stature, and various skeletal deformities in affected individuals. The role of site-2 protease, encoded by MBTPS2, and the molecular pathomechanism underlying the disease are to date elusive. This study is the first to report on the generation of two Mbtps2 mouse models, a knock-in mouse carrying one of the disease-causative MBTPS2 variants (N455S) and a Mbtps2 knock-out (ko) mouse. Because both loss-of-function variants lead to embryonic lethality in hemizygous male mutant mice, we performed a comprehensive skeletal analysis of heterozygous Mbtps2+/N455S and Mbtps2+/ko female mice. Both models displayed osteochondral abnormalities such as thinned subchondral bone, altered subchondral osteocyte interconnectivity as well as thickened articular cartilage with chondrocyte clustering, altogether resembling an early osteoarthritis (OA) phenotype. However, distant from the joints, no alterations in the bone mass and turnover could be detected in either of the mutant mice. Based on our findings we conclude that MBTPS2 haploinsufficiency results in early OA-like alterations in the articular cartilage and underlying subchondral bone, which likely precede the development of typical OI phenotype in bone. Our study provides first evidence for a potential role of site-2 protease for maintaining homeostasis of both bone and cartilage.


Asunto(s)
Cartílago Articular , Osteoartritis , Osteogénesis Imperfecta , Ratones , Masculino , Femenino , Animales , Osteogénesis Imperfecta/genética , Osteocitos , Huesos , Péptido Hidrolasas
9.
J Bone Miner Res ; 38(9): 1334-1349, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37554015

RESUMEN

Isolated short stature, defined as short stature without any other abnormalities, is a common heterogeneous condition in children. Exome sequencing identified the homozygous nonsense variant c.1832G>A/p.(Trp611*) in TMCO3 in two sisters with isolated short stature. Radiological studies, biochemical measurements, assessment of the skeletal status, and three-dimensional bone microarchitecture revealed no relevant skeletal and bone abnormalities in both sisters. The homozygous TMCO3 variant segregated with short stature in the family. TMCO3 transcript levels were reduced by ~50% in leukocyte-derived RNA of both sisters compared with controls, likely due to nonsense-mediated mRNA decay. In primary urinary cells of heterozygous family members, we detected significantly reduced TMCO3 protein levels. TMCO3 is functionally uncharacterized. We ectopically expressed wild-type TMCO3 in HeLa and ATDC5 chondrogenic cells and detected TMCO3 predominantly at the Golgi apparatus, whereas the TMCO3W611* mutant did not reach the Golgi. Coordinated co-expression of TMCO3W611* -HA and EGFP in HeLa cells confirmed intrinsic instability and/or degradation of the mutant. Tmco3 is expressed in all relevant mouse skeletal cell types. Highest abundance of Tmco3 was found in chondrocytes of the prehypertrophic zone in mouse and minipig growth plates where it co-localizes with a Golgi marker. Knockdown of Tmco3 in differentiated ATDC5 cells caused reduced and increased expression of Pthlh and Ihh, respectively. Measurement of long bones in Tmco3tm1b(KOMP)Wtsi knockout mice revealed significant shortening of forelimbs and hindlimbs. TMCO3 is a potential member of the monovalent cation:proton antiporter 2 (CPA2) family. By in silico tools and homology modeling, TMCO3 is predicted to have an N-terminal secretory signal peptide, forms a dimer localized to the membrane, and is organized in a dimerization and a core domain. The core domain contains the CPA2 motif essential for K+ binding and selectivity. Collectively, our data demonstrate that loss of TMCO3 causes growth defects in both humans and mice. © 2023 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Enanismo , Protones , Niño , Humanos , Animales , Ratones , Porcinos , Antiportadores , Células HeLa , Porcinos Enanos , Enanismo/genética , Aparato de Golgi
10.
bioRxiv ; 2023 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-37502964

RESUMEN

Traumatic brain injury (TBI) is associated with a hyperadrenergic state and paradoxically causes systemic bone loss while accelerating fracture healing. Here, we identify the beta2-adrenergic receptor (Adrb2) as a central mediator of these skeletal manifestations. While the negative effects of TBI on the unfractured skeleton can be explained by the established impact of Adrb2 signaling on bone formation, Adrb2 promotes neovascularization of the fracture callus under conditions of high sympathetic tone, including TBI and advanced age. Mechanistically, norepinephrine stimulates the expression of Vegfa and Cgrp primarily in periosteal cells via Adrb2, both of which synergistically promote the formation of osteogenic type-H vessels in the fracture callus. Accordingly, the beneficial effect of TBI on bone repair is abolished in mice lacking Adrb2 or Cgrp, and aged Adrb2-deficient mice without TBI develop fracture nonunions despite high bone formation in uninjured bone. Pharmacologically, the Adrb2 antagonist propranolol impairs, and the agonist formoterol promotes fracture healing in aged mice by regulating callus neovascularization. Clinically, intravenous beta-adrenergic sympathomimetics are associated with improved callus formation in trauma patients with long bone fractures. Thus, Adrb2 is a novel target for promoting bone healing, and widely used beta-blockers may cause fracture nonunion under conditions of increased sympathetic tone.

11.
Sci Rep ; 13(1): 11418, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452111

RESUMEN

Notch signaling regulates cell fate in multiple tissues including the skeleton. Hajdu-Cheney-Syndrome (HCS), caused by gain-of-function mutations in the Notch2 gene, is a rare inherited disease featuring early-onset osteoporosis and increased risk for fractures and non-union. As the impact of Notch2 overactivation on fracture healing is unknown, we studied bone regeneration in mice harboring a human HCS mutation. HCS mice, displaying high turnover osteopenia in the non-fractured skeleton, exhibited only minor morphologic alterations in the progression of bone regeneration, evidenced by static radiological and histological outcome measurements. Histomorphometry showed increased osteoclast parameters in the callus of HCS mice, which was accompanied by an increased expression of osteoclast and osteoblast markers. These observations were accompanied by inferior biomechanical stability of healed femora in HCS mice. Together, our data demonstrate that structural indices of bone regeneration are normal in HCS mice, which, however, exhibit signs of increased callus turnover and display impaired biomechanical stability of healed fractures.


Asunto(s)
Enfermedades Óseas Metabólicas , Síndrome de Hajdu-Cheney , Osteoporosis , Humanos , Ratones , Animales , Curación de Fractura , Síndrome de Hajdu-Cheney/genética , Síndrome de Hajdu-Cheney/metabolismo , Síndrome de Hajdu-Cheney/patología , Enfermedades Óseas Metabólicas/patología , Osteoporosis/patología , Osteoclastos/metabolismo , Receptor Notch2/metabolismo
12.
Sci Rep ; 13(1): 9563, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308580

RESUMEN

Mechanosensory ion channels are proteins that are sensitive to mechanical forces. They are found in tissues throughout the body and play an important role in bone remodeling by sensing changes in mechanical stress and transmitting signals to bone-forming cells. Orthodontic tooth movement (OTM) is a prime example of mechanically induced bone remodeling. However, the cell-specific role of the ion channels Piezo1 and Piezo2 in OTM has not been investigated yet. Here we first identify the expression of PIEZO1/2 in the dentoalveolar hard tissues. Results showed that PIEZO1 was expressed in odontoblasts, osteoblasts, and osteocytes, while PIEZO2 was localized in odontoblasts and cementoblasts. We therefore used a Piezo1floxed/floxed mouse model in combination with Dmp1cre to inactivate Piezo1 in mature osteoblasts/cementoblasts, osteocytes/cementocytes, and odontoblasts. Inactivation of Piezo1 in these cells did not affect the overall morphology of the skull but caused significant bone loss in the craniofacial skeleton. Histological analysis revealed a significantly increased number of osteoclasts in Piezo1floxed/floxed;Dmp1cre mice, while osteoblasts were not affected. Despite this increased number of osteoclasts, orthodontic tooth movement was not altered in these mice. Our results suggest that despite Piezo1 being crucial for osteoclast function, it may be dispensable for mechanical sensing of bone remodeling.


Asunto(s)
Células del Tejido Conectivo , Osteoblastos , Animales , Ratones , Osteoclastos , Osteocitos , Remodelación Ósea , Canales Iónicos
13.
J Bone Miner Res ; 38(5): 749-764, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36891752

RESUMEN

Despite considerable improvement in fracture care, 5%-10% of all fractures still heal poorly or result in nonunion formation. Therefore, there is an urgent need to identify new molecules that can be used to improve bone fracture healing. One activator of the Wnt-signaling cascade, Wnt1, has recently gained attention for its intense osteoanabolic effect on the intact skeleton. The aim of the present study was to investigate whether Wnt1 might be a promising molecule to accelerate fracture healing both in skeletally healthy and osteoporotic mice that display a diminished healing capacity. Transgenic mice for a temporary induction of Wnt1 specifically in osteoblasts (Wnt1-tg) were subjected to femur osteotomy. Non-ovariectomized and ovariectomized Wnt1-tg mice displayed significantly accelerated fracture healing based on a strong increase in bone formation in the fracture callus. Transcriptome profiling revealed that Hippo/yes1-associated transcriptional regulator (YAP)-signaling and bone morphogenetic protein (BMP) signaling pathways were highly enriched in the fracture callus of Wnt1-tg animals. Immunohistochemical staining confirmed increased activation of YAP1 and expression of BMP2 in osteoblasts in the fracture callus. Therefore, our data indicate that Wnt1 boosts bone formation during fracture healing via YAP/BMP signaling both under healthy and osteoporotic conditions. To further test a potential translational application of Wnt1, we applied recombinant Wnt1 embedded into a collagen gel during critical-size bone-defect repair. Mice treated with Wnt1 displayed increased bone regeneration compared to control mice accompanied by increased YAP1/BMP2 expression in the defect area. These findings are of high clinical relevance because they indicate that Wnt1 could be used as a new therapeutic agent to treat orthopedic complications in the clinic. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Curación de Fractura , Fracturas Óseas , Ratones , Animales , Curación de Fractura/fisiología , Osteogénesis/fisiología , Fracturas Óseas/metabolismo , Callo Óseo/metabolismo , Ratones Transgénicos , Vía de Señalización Wnt
14.
Front Physiol ; 13: 998039, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213247

RESUMEN

Mucopolysaccharidosis VI (MPS VI) is a hereditary lysosomal storage disease caused by the absence of the enzyme arylsulfatase B (ARSB). Craniofacial defects are common in MPS VI patients and manifest as abnormalities of the facial bones, teeth, and temporomandibular joints. Although enzyme replacement therapy (ERT) is the treatment of choice for MPS VI, the effects on the craniofacial and dental structures are still poorly understood. In this study, we used an Arsb-deficient mouse model (Arsb m/m ) that mimics MPS VI to investigate the effects of ERT on dental and craniofacial structures and compared these results with clinical and radiological observations from three MPS VI patients. Using micro-computed tomography, we found that the craniofacial phenotype of the Arsb m/m mice was characterized by bone exostoses at the insertion points of the masseter muscles and an overall increased volume of the jaw bone. An early start of ERT (at 4 weeks of age for 20 weeks) resulted in a moderate improvement of these jaw anomalies, while a late start of ERT (at 12 weeks of age for 12 weeks) showed no effect on the craniofacial skeleton. While teeth typically developed in Arsb m/m mice, we observed a pronounced loss of tooth-bearing alveolar bone. This alveolar bone loss, which has not been described before in MPS VI, was also observed in one of the MPS VI patients. Interestingly, only an early start of ERT led to a complete normalization of the alveolar bone in Arsb m/m mice. The temporomandibular joints in Arsb m/m mice were deformed and had a porous articular surface. Histological analysis revealed a loss of physiological cartilage layering, which was also reflected in an altered proteoglycan content in the cartilage of Arsb m/m mice. These abnormalities could only be partially corrected by an early start of ERT. In conclusion, our results show that an early start of ERT in Arsb m/m mice achieves the best therapeutic effects for tooth, bone, and temporomandibular joint development. As the MPS VI mouse model in this study resembles the clinical findings in MPS VI patients, our results suggest enzyme replacement therapy should be started as early as possible.

15.
Sci Rep ; 12(1): 16491, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36192408

RESUMEN

Primary sclerosing cholangitis (PSC) is an idiopathic cholestatic liver disease characterized by chronic inflammation and progressive fibrosis of intra- and extrahepatic bile ducts. Osteoporosis is a frequent comorbidity in PSC, and we could previously demonstrate that IL17-dependent activation of bone resorption is the predominant driver of bone loss in PSC. Since we additionally observed an unexpected heterogeneity of bone mineral density in our cohort of 238 PSC patients, the present study focused on a comparative analysis of affected individuals with diagnosed osteoporosis (PSCOPO, n = 10) or high bone mass (PSCHBM, n = 7). The two groups were not distinguishable by various baseline characteristics, including liver fibrosis or serum parameters for hepatic function. In contrast, quantification of serum bile acid concentrations identified significant increases in the PSCOPO group, including glycoursodeoxycholic acid (GUDCA), an exogenous bile acid administered to both patient groups. Although cell culture experiments did not support the hypothesis that an increase in circulating bile levels is a primary cause of PSC-associated osteoporosis, the remarkable differences of endogenous bile acids and GUDCA in the serum of PSCOPO patients strongly suggest a yet unknown impairment of biliary metabolism and/or hepatic bile acid clearance in this patient subgroup, which is independent of liver fibrosis.


Asunto(s)
Colangitis Esclerosante , Osteoporosis , Bilis/metabolismo , Ácidos y Sales Biliares , Colangitis Esclerosante/diagnóstico , Humanos , Cirrosis Hepática/complicaciones , Osteoporosis/complicaciones
16.
J Bone Miner Res ; 37(9): 1733-1749, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35773783

RESUMEN

Biallelic ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) deficiency induces vascular/soft tissue calcifications in generalized arterial calcification of infancy (GACI), and low bone mass with phosphate-wasting rickets in GACI survivors (autosomal hypophosphatemic rickets type-2). ENPP1 haploinsufficiency induces early-onset osteoporosis and mild phosphate wasting in adults. Both conditions demonstrate the unusual combination of reduced accrual of skeletal mineral, yet excess and progressive heterotopic mineralization. ENPP1 is the only enzyme that generates extracellular pyrophosphate (PPi), a potent inhibitor of both bone and heterotopic mineralization. Life-threatening vascular calcification in ENPP1 deficiency is due to decreased plasma PPi; however, the mechanism by which osteopenia results is not apparent from an understanding of the enzyme's catalytic activity. To probe for catalysis-independent ENPP1 pathways regulating bone, we developed a murine model uncoupling ENPP1 protein signaling from ENPP1 catalysis, Enpp1T238A mice. In contrast to Enpp1asj mice, which lack ENPP1, Enpp1T238A mice have normal trabecular bone microarchitecture and favorable biomechanical properties. However, both models demonstrate low plasma Pi and PPi, increased fibroblast growth factor 23 (FGF23), and by 23 weeks, osteomalacia demonstrating equivalent phosphate wasting in both models. Reflecting findings in whole bone, calvarial cell cultures from Enpp1asj mice demonstrated markedly decreased calcification, elevated transcription of Sfrp1, and decreased nuclear ß-catenin signaling compared to wild-type (WT) and Enpp1T238A cultures. Finally, the decreased calcification and nuclear ß-catenin signaling observed in Enpp1asj cultures was restored to WT levels by knockout of Sfrp1. Collectively, our findings demonstrate that catalysis-independent ENPP1 signaling pathways regulate bone mass via the expression of soluble Wnt inhibitors such as secreted frizzled-related protein 1 (SFRP1), whereas catalysis dependent pathways regulate phosphate homeostasis through the regulation of plasma FGF23. © 2022 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Huesos/fisiología , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/metabolismo , Animales , Catálisis , Raquitismo Hipofosfatémico Familiar , Factores de Crecimiento de Fibroblastos , Mamíferos/metabolismo , Ratones , Fosfatos/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Pirofosfatasas/genética , Calcificación Vascular , beta Catenina
17.
Nat Commun ; 13(1): 3059, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35650194

RESUMEN

Bone growth requires a specialised, highly angiogenic blood vessel subtype, so-called type H vessels, which pave the way for osteoblasts surrounding these vessels. At the end of adolescence, type H vessels differentiate into quiescent type L endothelium lacking the capacity to promote bone growth. Until now, the signals that switch off type H vessel identity and thus limit adolescent bone growth have remained ill defined. Here we show that mechanical forces, associated with increased body weight at the end of adolescence, trigger the mechanoreceptor PIEZO1 and thereby mediate enhanced production of the kinase FAM20C in osteoblasts. FAM20C, the major kinase of the secreted phosphoproteome, phosphorylates dentin matrix protein 1, previously identified as a key factor in bone mineralization. Thereupon, dentin matrix protein 1 is secreted from osteoblasts in a burst-like manner. Extracellular dentin matrix protein 1 inhibits vascular endothelial growth factor signalling by preventing phosphorylation of vascular endothelial growth factor receptor 2. Hence, secreted dentin matrix protein 1 transforms type H vessels into type L to limit bone growth activity and enhance bone mineralization. The discovered mechanism may suggest new options for the treatment of diseases characterised by aberrant activity of bone and vessels such as osteoarthritis, osteoporosis and osteosarcoma.


Asunto(s)
Calcificación Fisiológica , Neovascularización Fisiológica , Estrés Mecánico , Adolescente , Desarrollo Óseo , Matriz Ósea , Proteínas de la Matriz Extracelular , Humanos , Canales Iónicos , Morfogénesis , Fosfoproteínas , Factor A de Crecimiento Endotelial Vascular , Receptor 2 de Factores de Crecimiento Endotelial Vascular
18.
Front Pharmacol ; 13: 858215, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35392569

RESUMEN

Several studies have shown that the G-protein coupled cannabinoid receptor CB2 and its interaction partner p62 are molecularly involved in bone remodeling processes. Pharmacological activation of the CB2 receptor enhanced bone volume in postmenopausal osteoporosis and arthritis models in rodents, whereas knockout or mutation of the p62 protein in aged mice led to Paget's disease of bone-like conditions. Studies of pharmacological CB2 agonist effects on bone metabolism in p62 KO mice have not been performed to date. Here, we assessed the effect of the CB2-specific agonist JWH133 after a short-term (5 days in 3-month-old mice) or long-term (4 weeks in 6-month-old mice) treatment on structural, dynamic, and cellular bone morphometry obtained by µCT of the femur and histomorphometry of the vertebral bodies in p62 KO mice and their WT littermates in vivo. A genotype-independent stimulatory effect of CB2 on bone formation, trabecular number, and trabecular thickness after short-term treatment and on tissue mineral density after long-term treatment was detected, indicating a weak osteoanabolic function of this CB2 agonist. Moreover, after short-term systemic CB2 receptor activation, we found significant differences at the cellular level in the number of osteoblasts and osteoclasts only in p62 KO mice, together with a weak increase in trabecular number and a decrease in trabecular separation. Long-term treatment showed an opposite JWH133 effect on osteoclasts in WT versus p62 KO animals and decreased cortical thickness only in treated p62 KO mice. Our results provide new insights into CB2 receptor signaling in vivo and suggest that CB2 agonist activity may be regulated by the presence of its macromolecular binding partner p62.

19.
Hum Mutat ; 43(5): 625-642, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35266227

RESUMEN

BNIP1 (BCL2 interacting protein 1) is a soluble N-ethylmaleimide-sensitive factor-attachment protein receptor involved in ER membrane fusion. We identified the homozygous BNIP1 intronic variant c.84+3A>T in the apparently unrelated patients 1 and 2 with disproportionate short stature. Radiographs showed abnormalities affecting both the axial and appendicular skeleton and spondylo-epiphyseal dysplasia. We detected ~80% aberrantly spliced BNIP1 pre-mRNAs, reduced BNIP1 mRNA level to ~80%, and BNIP1 protein level reduction by ~50% in patient 1 compared to control fibroblasts. The BNIP1 ortholog in Drosophila, Sec20, regulates autophagy and lysosomal degradation. We assessed lysosome positioning and identified a decrease in lysosomes in the perinuclear region and an increase in the cell periphery in patient 1 cells. Immunofluorescence microscopy and immunoblotting demonstrated an increase in LC3B-positive structures and LC3B-II levels, respectively, in patient 1 fibroblasts under steady-state condition. Treatment of serum-starved fibroblasts with or without bafilomycin A1 identified significantly decreased autophagic flux in patient 1 cells. Our data suggest a block at the terminal stage of autolysosome formation and/or clearance in patient fibroblasts. BNIP1 together with RAB33B and VPS16, disease genes for Smith-McCort dysplasia 2 and a multisystem disorder with short stature, respectively, highlight the importance of autophagy in skeletal development.


Asunto(s)
Autofagosomas , Autofagia , Animales , Autofagosomas/metabolismo , Autofagia/genética , Drosophila , Homocigoto , Humanos , Lisosomas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
20.
J Clin Endocrinol Metab ; 107(7): e3048-e3057, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35276006

RESUMEN

CONTEXT: Many different inherited and acquired conditions can result in premature bone fragility/low bone mass disorders (LBMDs). OBJECTIVE: We aimed to elucidate the impact of genetic testing on differential diagnosis of adult LBMDs and at defining clinical criteria for predicting monogenic forms. METHODS: Four clinical centers broadly recruited a cohort of 394 unrelated adult women before menopause and men younger than 55 years with a bone mineral density (BMD) Z-score < -2.0 and/or pathological fractures. After exclusion of secondary causes or unequivocal clinical/biochemical hallmarks of monogenic LBMDs, all participants were genotyped by targeted next-generation sequencing. RESULTS: In total, 20.8% of the participants carried rare disease-causing variants (DCVs) in genes known to cause osteogenesis imperfecta (COL1A1, COL1A2), hypophosphatasia (ALPL), and early-onset osteoporosis (LRP5, PLS3, and WNT1). In addition, we identified rare DCVs in ENPP1, LMNA, NOTCH2, and ZNF469. Three individuals had autosomal recessive, 75 autosomal dominant, and 4 X-linked disorders. A total of 9.7% of the participants harbored variants of unknown significance. A regression analysis revealed that the likelihood of detecting a DCV correlated with a positive family history of osteoporosis, peripheral fractures (> 2), and a high normal body mass index (BMI). In contrast, mutation frequencies did not correlate with age, prevalent vertebral fractures, BMD, or biochemical parameters. In individuals without monogenic disease-causing rare variants, common variants predisposing for low BMD (eg, in LRP5) were overrepresented. CONCLUSION: The overlapping spectra of monogenic adult LBMD can be easily disentangled by genetic testing and the proposed clinical criteria can help to maximize the diagnostic yield.


Asunto(s)
Osteogénesis Imperfecta , Osteoporosis , Fracturas de la Columna Vertebral , Adulto , Densidad Ósea/genética , Femenino , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Mutación , Osteogénesis Imperfecta/diagnóstico , Osteogénesis Imperfecta/genética , Osteoporosis/diagnóstico , Osteoporosis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...