Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Philos Trans R Soc Lond B Biol Sci ; 375(1794): 20190128, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-31983334

RESUMEN

Integrated high-resolution maps of carbon stocks and biodiversity that identify areas of potential co-benefits for climate change mitigation and biodiversity conservation can help facilitate the implementation of global climate and biodiversity commitments at local levels. However, the multi-dimensional nature of biodiversity presents a major challenge for understanding, mapping and communicating where and how biodiversity benefits coincide with climate benefits. A new integrated approach to biodiversity is therefore needed. Here, we (a) present a new high-resolution map of global above- and below-ground carbon stored in biomass and soil, (b) quantify biodiversity values using two complementary indices (BIp and BIr) representing proactive and reactive approaches to conservation, and (c) examine patterns of carbon-biodiversity overlap by identifying 'hotspots' (20% highest values for both aspects). Our indices integrate local diversity and ecosystem intactness, as well as regional ecosystem intactness across the broader area supporting a similar natural assemblage of species to the location of interest. The western Amazon Basin, Central Africa and Southeast Asia capture the last strongholds of highest local biodiversity and ecosystem intactness worldwide, while the last refuges for unique biological communities whose habitats have been greatly reduced are mostly found in the tropical Andes and central Sundaland. There is 38 and 5% overlap in carbon and biodiversity hotspots, for proactive and reactive conservation, respectively. Alarmingly, only around 12 and 21% of these proactive and reactive hotspot areas, respectively, are formally protected. This highlights that a coupled approach is urgently needed to help achieve both climate and biodiversity global targets. This would involve (1) restoring and conserving unprotected, degraded ecosystems, particularly in the Neotropics and Indomalaya, and (2) retaining the remaining strongholds of intactness. This article is part of the theme issue 'Climate change and ecosystems: threats, opportunities and solutions'.


Asunto(s)
Biodiversidad , Secuestro de Carbono , Cambio Climático , Conservación de los Recursos Naturales/métodos , Ecosistema
2.
Science ; 356(6334): 180-183, 2017 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-28408600

RESUMEN

Hunting is a major driver of biodiversity loss, but a systematic large-scale estimate of hunting-induced defaunation is lacking. We synthesized 176 studies to quantify hunting-induced declines of mammal and bird populations across the tropics. Bird and mammal abundances declined by 58% (25 to 76%) and by 83% (72 to 90%) in hunted compared with unhunted areas. Bird and mammal populations were depleted within 7 and 40 kilometers from hunters' access points (roads and settlements). Additionally, hunting pressure was higher in areas with better accessibility to major towns where wild meat could be traded. Mammal population densities were lower outside protected areas, particularly because of commercial hunting. Strategies to sustainably manage wild meat hunting in both protected and unprotected tropical ecosystems are urgently needed to avoid further defaunation.


Asunto(s)
Aves , Extinción Biológica , Actividades Humanas , Mamíferos , Animales , Biodiversidad , Densidad de Población
3.
Environ Res ; 151: 50-57, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27450999

RESUMEN

Polar bears (Ursus maritimus) currently receive much attention in the context of global climate change. However, there are other stressors that might threaten the viability of polar bear populations as well, such as exposure to anthropogenic pollutants. Lipophilic organic compounds bio-accumulate and bio-magnify in the food chain, leading to high concentrations at the level of top-predators. In Arctic wildlife, including the polar bear, various adverse health effects have been related to internal concentrations of commercially used anthropogenic chemicals like PCB and DDT. The extent to which these individual health effects are associated to population-level effects is, however, unknown. In this study we assembled data on adipose tissue concentrations of ∑PCB, ∑DDT, dieldrin and ∑PBDE in individual polar bears from peer-reviewed scientific literature. Data were available for 14 out of the 19 subpopulations. We found that internal concentrations of these contaminants exceed threshold values for adverse individual health effects in several subpopulations. In an exploratory regression analysis we identified a clear negative correlation between polar bear population density and sub-population specific contaminant concentrations in adipose tissue. The results suggest that adverse health effects of contaminants in individual polar bears may scale up to population-level consequences. Our study highlights the need to consider contaminant exposure along with other threats in polar bear population viability analyses.


Asunto(s)
Tejido Adiposo/química , Contaminantes Ambientales/análisis , Ursidae , Animales , Regiones Árticas , DDT/análisis , Dieldrín/análisis , Monitoreo del Ambiente , Femenino , Éteres Difenilos Halogenados/análisis , Bifenilos Policlorados/análisis , Densidad de Población
4.
Ecology ; 97(3): 615-26, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27197389

RESUMEN

Methods to quantify the vulnerability of species to extinction are typically limited by the availability of species-specific input data pertaining to life-history characteristics and population dynamics. This lack of data hampers global biodiversity assessments and conservation planning. Here, we developed a new framework that systematically quantifies extinction risk based on allometric relationships between various wildlife demographic parameters and body size. These allometric relationships have a solid theoretical and ecological foundation. Extinction risk indicators included are (1) the probability of extinction, (2) the mean time to extinction, and (3) the critical patch size. We applied our framework to assess the global extinction vulnerability of terrestrial carnivorous and non-carnivorous birds and mammals. Irrespective of the indicator used, large-bodied species were found to be more vulnerable to extinction than their smaller counterparts. The patterns with body size were confirmed for all species groups by a comparison with IUCN data on the proportion of extant threatened species: the models correctly predicted a multimodal distribution with body size for carnivorous birds and a monotonic distribution for mammals and non-carnivorous birds. Carnivorous mammals were found to have higher extinction risks than non-carnivores, while birds were more prone to extinction than mammals. These results are explained by the allometric relationships, predicting the vulnerable species groups to have lower intrinsic population growth rates, smaller population sizes, lower carrying capacities, or larger dispersal distances, which, in turn, increase the importance of losses due to environmental stochastic effects and dispersal activities. Our study is the first to integrate population viability analysis and allometry into a novel, process-based framework that is able to quantify extinction risk of a large number of species without requiring data-intensive, species-specific information. The framework facilitates the estimation of extinction vulnerabilities of data-deficient species. It may be applied to forecast extinction vulnerability in response to a changing environment, by incorporating quantitative relationships between wildlife demographic parameters and environmental drivers like habitat alteration, climate change, or hunting.


Asunto(s)
Aves/fisiología , Extinción Biológica , Mamíferos/fisiología , Animales , Modelos Biológicos , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...