Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Soc Rev ; 49(15): 5140-5158, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32597430

RESUMEN

Covalent long-range ordered (crystalline) sheets called 2D polymers have recently been synthesized by irradiating single crystals of suitably packed monomers. To have such an action proceed successfully, billions of bond formation processes have to be mastered exclusively in two dimensions within 3D crystals. This raises questions as to how to elucidate the mechanism of these unusual polymerizations as well as their entire strain management. The article will show that single crystal X-ray diffraction based on both Bragg and diffuse scattering are powerful techniques to achieve such goal. The very heart of both techniques will be explained and it will be shown what can be safely concluded with their help and what not. Consequently, the reader will understand why some crystals break during polymerization, while others stay intact. This understanding will then be molded into a few guidelines that should help pave the way for future developments of 2D polymers by those interested in joining the effort with this fascinating and emerging class of 2D materials.

2.
Angew Chem Int Ed Engl ; 59(14): 5683-5695, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-31821673

RESUMEN

2D polymer sheets with six positively charged pyrylium groups at each pore edge in a stacked single crystal can be transformed into a 2D polymer with six pyridines per pore by exposure to gaseous ammonia. This reaction furnishes still a crystalline material with tunable protonation degree at regular nano-sized pores promising as separation membrane. The exfoliation is compared for both 2D polymers with the latter being superior. Its liquid phase exfoliation yields nanosheet dispersions, which can be size-selected using centrifugation cascades. Monolayer contents of ≈30 % are achieved with ≈130 nm sized sheets in mg quantities, corresponding to tens of trillions of monolayers. Quantification of nanosheet sizes, layer number and mass shows that this exfoliation is comparable to graphite. Thus, we expect that recent advances in exfoliation of graphite or inorganic crystals (e.g. scale-up, printing etc.) can be directly applied to this 2D polymer as well as to covalent organic frameworks.

4.
Chem Sci ; 10(24): 6125-6139, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31360419

RESUMEN

We present a comprehensive investigation of main-chain scission processes affecting peripherally charged and neutral members of a class of dendronized polymers (DPs) studied in our laboratory. In these thick, sterically highly congested macromolecules, scission occurs by exposure to solvents, in some cases at room temperature, in others requiring modest heating. Our investigations rely on gel permeation chromatography and atomic force microscopy and are supported by molecular dynamics simulations as well as by electron paramagnetic resonance spectroscopy. Strikingly, DP main-chain scission depends strongly on two factors: first the solvent, which must be highly polar to induce scission of the DPs, and second the dendritic generation g. In DPs of generations 1 ≤ g ≤ 8, scission occurs readily only for g = 5, no matter whether the polymer is charged or neutral. Much more forcing conditions are required to induce degradation in DPs of g ≠ 5. We propose solvent swelling as the cause for the main-chain scission in these individual polymer molecules, explaining in particular the strong dependence on g: g < 5 DPs resemble classical polymers and are accessible to the strongly interacting, polar solvents, whereas g > 5 DPs are essentially closed off to solvent due to their more closely colloidal character. g = 5 DPs mark the transition between these two regimes, bearing strongly sterically congested side chains which are still solvent accessible to some degree. Our results suggest that, even in the absence of structural elements which favour scission such as cross-links, solvent swelling may be a generally applicable mechanochemical trigger. This may be relevant not only for DPs, but also for other types of sterically strongly congested macromolecules.

5.
Soft Matter ; 15(32): 6547-6556, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31359025

RESUMEN

Dendronized polymers (DPs) are large and compact main-chain linear polymers with a cylindrical shape and cross-sectional diameters of up to ∼15 nm. They are therefore considered molecular objects, and it was of interest whether given their experimentally accessible, well-defined dimensions, the density of individual DPs could be determined. We present measurements on individual, deposited DP chains, providing molecular dimensions from scanning and transmission electron microscopy and mass-per-length values from quantitative scanning transmission electron microscopy. These results are compared with density values obtained from small-angle X-ray scattering on annealed bulk specimen and with classical envelope density measurements, obtained using hydrostatic weighing or a density gradient column. The samples investigated comprise a series of DPs with side groups of dendritic generations g = 1-8. The key findings are a very large spread of the density values over all samples and methods, and a consistent increase of densities with g over all methods. While this work highlights the advantages and limitations of the applied methods, it does not provide a conclusive answer to the question of which method(s) to use for the determination of densities of individual molecular objects. We are nevertheless confident that these first attempts to answer this challenging question will stimulate more research into this important aspect of polymer and soft matter science.

6.
J Am Chem Soc ; 141(25): 9867-9871, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31244135

RESUMEN

Structural elucidation of 2D polymer monolayers proving long-range order is a challenge that limits the pace in which this recent field of polymer chemistry and of synthetic 2D materials develops. To overcome this bottleneck, we here present a method in which tip-enhanced Raman spectroscopy is combined with a random growth crystallization model to obtain global features from local spectroscopic information. Concretely, we prove the nature and determine the conversion number X of the cross-links for two new 2D homopolymers and one (of three) new 2D copolymers. Assuming random and in-plane growth, our model results in crystallinity degrees of 93.1% to 99.7% and mean radii of defect-free crystalline areas of 3-15 nm for conversion numbers of 84% < X < 98%. Thus, we provide strong evidence for the synthetic monolayer 2D materials presented that they qualify as 2D polymers and are therefore perfectly suited for in-depth studies both in a more fundamental direction as well as toward application. This example shows how our method can affect current research on covalent sheets.

7.
ACS Nano ; 13(3): 3466-3473, 2019 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-30835993

RESUMEN

The backbone conformations of individual, unperturbed synthetic macromolecules have so far not been observed directly in spite of their fundamental importance to polymer physics. Here we report the dilute solution conformations of two types of linear dendronized polymers, obtained by cryogenic transmission electron stereography and tomography. The three-dimensional trajectories show that the wormlike chain model fails to adequately describe the scaling of these thick macromolecules already beyond a few nanometers in chain length, in spite of large apparent persistence lengths and long before a signature of self-avoidance appears. This insight is essential for understanding the limitations of polymer physical models, and it motivated us to discuss the advantages and disadvantages of this approach in comparison to the commonly applied scattering techniques.

8.
Chem Sci ; 10(42): 9673-9678, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-32055337

RESUMEN

A two-dimensional (2D) covalent monolayer based on [4 + 4] cycloaddition reactions between adjacent anthracene units was synthesized at an air/water interface. For structural analysis, tip-enhanced Raman spectroscopy (TERS) provides direct evidence for the covalent bonds formed between monomer molecules. For the first time, progress of the photopolymerization reaction was monitored by irradiation (λ = 385 nm) of the monomer monolayer for different times, based on averaged TER spectra extracted from maps. In addition, a 2D polymerization on a Au (111) substrate was realized, which opens up new possibilities for such chemical transformations. This work uses TERS as a minimally invasive tool to investigate how the reaction conditions affect polymerization conversion. We show that the high sensitivity and the high spatial resolution of TERS can be used to estimate the crystallinity of 2D covalent monolayers, which is a key question in polymer synthesis.

9.
Macromol Rapid Commun ; 40(1): e1800719, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30565776

RESUMEN

This feature article provides both a critical perspective as to where synthetic 2D polymers currently stand and a rather substantial view into how the future of this exciting field of polymer chemistry might look. It starts out by addressing strategic considerations meant to familiarize the reader with what to expect when entering the field. To better understand these considerations, the very nature of a 2D polymer is addressed in comparison to other organic 2D materials. Thereafter, the article moves quite intensely and critically into synthetic and mechanistic issues of 2D polymers before concentrating on the important structural analytics that one has to go through when unequivocally establishing these novel sheet-like polymeric objects. After a short excursion into the matter of exfoliation, the feature article then culminates in a section attempting to forecast the future. Key differences between 1D and 2D polymers are highlighted, and those considered by the authors to be the most attractive and burning research goals are further discussed. It is hoped that the reader will find this speculative section inspiring enough such that ideas that will help in advancing 2D polymers even faster are generated.


Asunto(s)
Polímeros/síntesis química , Estructura Molecular , Tamaño de la Partícula , Polímeros/química , Propiedades de Superficie
10.
Chimia (Aarau) ; 73(6): 446-447, 2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38549204
11.
Chimia (Aarau) ; 73(6): 487-492, 2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38549211

RESUMEN

Recent breakthroughs in the single crystal approach to synthetic 2D polymers have shifted the limelight onto these long-range ordered sheet-like polymers synthesized at the air/water interface, where one obtains them as laterally macroscopic monolayers without the need for exfoliation. The article presents the most recent monomers for this approach and shows an important analytical development in the field of structure elucidation as well as findings relevant to potential applications. The analytical development concerns an indirect method to establish crystallinity of 2D polymer monolayers based on a combination of tip-enhanced Raman spectroscopy and a crystallization model. The more application-oriented aspects concern the use of ordered 1-1.5 nm thick monomer arrays for laser-triggered writing and for a novel type of lithography both based on a two-dimensional polymerization.

12.
ACS Nano ; 12(11): 11294-11306, 2018 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-30354049

RESUMEN

In this work we prepare Langmuir-Blodgett monolayers with a trifunctional amphiphilic anthraphane monomer. Upon spreading at the air/water interface, the monomers self-assemble into 1 nm-thin monolayer islands, which are highly fluorescent and can be visualized by the naked eye upon excitation. In situ fluorescence spectroscopy indicates that in the monolayers, all the anthracene units of the monomers are stacked face-to-face forming excimer pairs, whereas at the edges of the monolayers, free anthracenes are present acting as edge groups. Irradiation of the monolayer triggers [4 + 4]-cycloadditions among the excimer pairs, effectively resulting in a two-dimensional (2D) polymerization. The polymerization reaction also completely quenches the fluorescence, allowing to draw patterns on the monomer monolayers. More interestingly, after transferring the monomer monolayer on a solid substrate, by employing masks or the laser of a confocal scanning microscope, it is possible to arbitrarily select the parts of the monolayer that one wants to polymerize. The unpolymerized regions can then be washed away from the substrate, leaving 2D macromolecular monolayer objects of the desired shape. This photolithographic process employs 2D polymerizations and affords 1 nm-thin coatings.

13.
Chemistry ; 24(56): 15003-15012, 2018 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-29984526

RESUMEN

In this work we present one of the rare cases of single-crystal-to-single-crystal (SCSC) linear polymerizations, resulting in a novel ladder-type polymer. The polymerization is based on the photoinduced [4+4]-cycloaddition reactions between trifunctional anthracene-based monomers. The careful design of the monomer anthraphane-tri(OMe), results in perfectly stacked anthracene pairs in the crystal structure, with Schmidt's distances d=3.505-3.666 Šand shift s=1.109 Å, allowing a selective linear polymerization in quantitative yields and in a matter of minutes, without compromising the integrity of the single crystals. The obtained polyanthraphane-tri(OMe), reveals moreover a very interesting and unprecedented case of stereoisomerism, which is characteristic for polyanthraphanes.

14.
Angew Chem Int Ed Engl ; 57(33): 10584-10588, 2018 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-29888847

RESUMEN

A trifunctional, partially fluorinated anthracene-substituted triptycene monomer was spread at an air/water interface into a monolayer, which was transformed into a long-range-ordered 2D polymer by irradiation with a standard UV lamp. The polymer was analyzed by Brewster angle microscopy, scanning tunneling microscopy measurements, and non-contact atomic force microscopy, which confirmed the generation of a network structure with lattice parameters that are virtually identical to a structural model network based on X-ray diffractometry of a closely related 2D polymer. The nc-AFM images highlight the long-range order over areas of at least 300×300 nm2 . As required for a 2D polymer, the pore sizes are monodisperse, except for the regions where the network is somewhat stretched because it spans over protrusions. Together with a previous report on the nature of the cross-links in this network, the structural information provided herein leaves no doubt that a 2D polymer has been synthesized under ambient conditions at an air/water interface.

15.
Angew Chem Int Ed Engl ; 57(42): 13748-13763, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29845730

RESUMEN

Periodic and nanoporous monolayer polymers, the structures of which can be viewed as molecular fishing nets, have been classified as 2D polymers. They have been previously synthesized under mild photoirradiation conditions in the interior of layered single crystals of well-designed monomers, followed by a liquid-phase exfoliation. While these mild conditions allow for full structure control, the size of 2D polymers obtained cannot exceed that of the crystals from which they are prepared. In this Review, we discuss different concepts currently pursued to prepare macroscopically sized 2D polymers, focusing on syntheses at the air-water and liquid-liquid interfaces. While these interfaces are larger reaction loci than single crystals, sheet-like polymers obtained at them pose complex and time-consuming analytical challenges. Some of these challenges are concretely discussed and indicators are provided for identifying the promising cases, enabling to concentrate on them in the future research. Additionally, this Review discusses three representative examples of 2D polymers to provide a state-of-the-art picture of this emerging field of polymer and materials science. Finally, we sketch the range of applications, such as nanomembranes, electronics, optoelectronics, and electrocatalysts for water splitting, that are relevant for these novel organic 2D materials.

16.
ACS Nano ; 12(5): 5021-5029, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29659244

RESUMEN

Nanoscale defects in monolayers (MLs) of two-dimensional (2D) materials, such as graphene, transition-metal dichalcogenides, and 2D polymers, can alter their physical, mechanical, optoelectronic, and chemical properties. However, detailed information about nanodefects within 2D covalent monolayers is difficult to obtain because it requires highly selective and sensitive techniques that can provide chemical information at the nanoscale. Here, we report a 2D imine-linked ML prepared from two custom-designed building blocks by dynamic imine chemistry at the air/water interface, in which an acetylenic moiety in one of the blocks was used as a spectroscopic reporter for nanodefects. Combined with density functional theory calculations that take into account surface selection rules, tip-enhanced Raman spectroscopy (TERS) imaging provides information on the chemical bonds, molecular orientation, as well as nanodefects in the resulting ML. Additionally, TERS imaging visualizes the topography and integrity of the ML at Au(111) terrace edges, suggesting possible ductility of the ML. Furthermore, edge-induced molecular tilting and a stronger signal enhancement were observed at the terrace edges, from which a spatial resolution around 8 nm could be deduced. The present work can be used to study covalent 2D materials at the nanoscale, which are expected to be of use when engineering their properties for specific device applications.

17.
Angew Chem Int Ed Engl ; 56(48): 15262-15266, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-28922539

RESUMEN

This work describes a two-dimensional polymerization at an air/water interface and provides, for the first time, direct spectroscopic evidence for the kind of crosslinks formed and for the conversion reached in a covalently bonded monolayer sheet. This evidence was obtained through a combination of a variety of monolayer characterization techniques before and after transfer onto solid substrates, in particular by tip-enhanced Raman spectroscopy (TERS) and TERS mapping after transfer of both the monomer and polymer monolayer onto Au(111). This work is a major advance for the field of 2D polymers synthesized at the air/water interface as it, in principle, allows estimation of the crystallinity by percolation theory and the location of regions with defects.

18.
Angew Chem Int Ed Engl ; 56(32): 9361-9366, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28597527

RESUMEN

We report an investigation of interfacial fluorinated hydrocarbon (carboxylic-fantrip) monolayers by nanoscale imaging using tip-enhanced Raman spectroscopy (TERS) and density functional theory (DFT) calculations. By comparing TERS images of a sub-monolayer prepared by spin-coating and a π-π-stacked monolayer on Au(111) in which the molecular orientation is confined, specific Raman peaks shift and line widths narrow in the transferred LB monolayer. Based on DFT calculations that take into account dispersion corrections and surface selection rules, these specific effects are proposed to originate from π-π stacking and molecular orientation restriction. TERS shows the possibility to distinguish between a random and locked orientation with a spatial resolution of less than 10 nm. This work combines experimental TERS imaging with theoretical DFT calculations and opens up the possibility of studying molecular orientations and intermolecular interaction at the nanoscale and molecular level.

19.
Nanoscale ; 9(27): 9481-9490, 2017 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-28660973

RESUMEN

The acid-assisted wet-chemical and the adhesive-tape induced micromechanical exfoliation of differently sized single crystals of a 2D polymer (approx. 20 µm and 100 µm) is shown to result in thin sheet stacks. Tuning of the thickness is achieved via duration and frequency of the exfoliation, respectively. A color code is established that correlates interference colors of sheet stacks on SiO2(300 nm)/Si as observed under an optical microscope with their thicknesses measured by atomic force microscopy. This facilitates reliable monitoring of the exfoliation and quick identification of sheet stacks of a desired thickness. Furthermore, high resolution atomic force microscopy is applied to investigate the surfaces of starting crystals and both wet-chemically and micromechanically exfoliated sheet stacks aiming at exploring whether exfoliation proceeds with preservation of surface periodicity and with a low frequency of sheet rupturing. These investigations also aimed at uncovering possible point defects and domain (grain) boundaries in the surfaces. It appears that all investigated objects have a high molecular scale perfection and that both exfoliation methods proceed mild enough to largely preserve the molecular structure of the 2D polymer including the not covalently bonded template molecules being part of the crystal packing.

20.
Adv Mater ; 29(27)2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28485053

RESUMEN

A Langmuir-Blodgett film consisting of a dense array of trifunctional monomers bearing three 1,8-diazaanthracene units is polymerized at an air/water interface or after transfer on solid substrates. The transfer does not affect the excimer fluorescence of the film, indicating that the monomers' packing with their diazaanthracene units stacked face-to-face is retained-a prerequisite for successful polymerization. The monomer film can be polymerized in confined areas on solid substrates by UV irradiation with a confocal microscope laser. The underlying chemistry of the polymerization, a [4+4]-cycloaddition of the diazaanthracene units, leads to disappearance of the fluorescence in the irradiated regions which enables writing into the monolayer on a µm scale-thus the term "molecular paper." The reaction can be reversed by heating which leads to a recovery of the fluorescence and to erasing of the writing. Alternative pathways for this phenomenon are discussed and control experiments are conducted to rule them out.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...