Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(46): 54129-54142, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37948676

RESUMEN

The porous transport layer (PTL) in polymer electrolyte membrane (PEM) electrolyzers governs the overall efficiency. Its structural, thermal, and electronic properties determine how effortlessly the gases can be produced and can exit the PEM electrolyzer. In this study, we apply a stochastic reconstruction method for titanium felt-based PTLs to generate PTLs with different porosity, fiber radii, and anisotropy parameters. The morphology and topology of these PTLs are numerically characterized, and transport properties, such as gas diffusion coefficients and electrical and thermal conductivity, are computed via pore-scale modeling. Customized graded PTLs are proposed, exhibiting the optimal topology and bulk structure for the removal of gases, the conductance of electrons, and the transport of heat. The results indicate that the surface and transport properties of PTLs can be tailored by certain morphology parameters: PTLs with lower porosity and smaller fiber radii feature a more sufficient interfacial contact and superior electrical and thermal conductivity. Lowering the anisotropy parameters of PTLs results in a slight loss of interfacial contact but a substantial increase in the electrical and thermal conductivity in the through-plane direction. We outline that the design of PTLs should be differentiated depending on the operating conditions of electrolyzers. For nonstarvation conditions, PTLs should feature low porosity and small fiber radii, whereas for starvation conditions, PTLs should feature high porosity, low anisotropy parameters, and small fiber radii. Furthermore, graded PTLs with enhanced structural and transport properties can be developed by customizing the porosity, fiber radius, and fiber orientation.

2.
Chemphyschem ; 24(18): e202300197, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37402703

RESUMEN

The porous transport layer (PTL) plays an integral role for the mass transport in polymer electrolyte membrane (PEM) electrolyzers. In this work, a stochastic reconstruction method of titanium felt-based PTLs is applied and combined with the Lattice Boltzmann method (LBM). The aim is to parametrically investigate the impact of different PTL structures on the transport of oxygen. The structural characteristics of a reconstructed PTL agree well with experimental investigations. Moreover, the impact of PTL porosity, fiber radius, and anisotropy parameter on the structural characteristics of PTLs are analyzed, and their impact on oxygen transport are elucidated by LBM. Eventually, a customized graded PTL is reconstructed, exhibiting almost optimal mass transport performance for the removal of oxygen. The results show that a higher porosity, larger fiber radius, and smaller anisotropy parameter facilitate the formation of oxygen propagation pathways. By tailoring the fiber characteristics and thus optimizing the PTLs, guidelines for the optimal design and manufacturing can be obtained for large-scale PTLs for electrolyzers.

3.
Chemphyschem ; 23(13): e202200012, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35389549

RESUMEN

Impedance spectroscopy is a powerful characterization method to evaluate the performance of electrochemical systems. However, overlapping signals in the resulting impedance spectra oftentimes cause misinterpretation of the data. The distribution of relaxation times (DRT) method overcomes this problem by transferring the impedance data from the frequency domain into the time domain, which yields DRT spectra with an increased resolution. Unfortunately, the determination of the DRT is an ill-posed problem, and appropriate mathematical regularizations become inevitable to find suitable solutions. The Tikhonov algorithm is a widespread method for computing DRT data, but it leads to unlikely spectra due to necessary boundaries. Therefore, we introduce the application of three alternative algorithms (Gold, Richardson Lucy, Sparse Spike) for the determination of stable DRT solutions and compare their performances. As the promising Sparse Spike deconvolution has a limited scope when using one single regularization parameter, we furthermore replaced the scalar regularization parameter with a vector. The resulting method is able to calculate well-resolved DRT spectra.


Asunto(s)
Algoritmos , Impedancia Eléctrica
4.
iScience ; 24(8): 102822, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34337365

RESUMEN

The formation of combined electrogenic/electrotrophic biofilms from marine sediments for the development of microbial energy storage systems was studied. Sediment samples from the German coasts of the Baltic and the North Sea were used as inocula for biofilm formation. Anodic biofilm cultivation was applied for a fast and reproducible biofilm formation. North-Sea- and Baltic-Sea-derived biofilms yielded comparable anodic current densities of about 7.2 A m-2. The anodic cultivation was followed by a potential reversal regime, transitioning the electrode potential from 0.2 V to -0.8 V every 2 h to switch between anodic and cathodic conditions. The charge-discharge behavior was studied, revealing an electrochemical conversion of biogenic elemental sulfur as major charge-discharge mechanism. The microbial sequencing revealed strong differences between North- and Baltic-Sea-derived biofilms; however with a large number of known sulfur-converting and electrochemically active bacteria in both biofilms.

5.
J Chem Phys ; 138(3): 034104, 2013 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-23343265

RESUMEN

In subsystem time-dependent density functional theory (TDDFT) [J. Neugebauer, J. Chem. Phys. 126, 134116 (2007)] localized excitations are used to calculate delocalized excitations in large chromophore aggregates. We have extended this formalism to allow for the Tamm-Dancoff approximation (TDA). The resulting response equations have a form similar to a perturbative configuration interaction singles (CIS) approach. Thus, the inter-subsystem matrix elements in subsystem TDA can, in contrast to the full subsystem-TDDFT case, directly be interpreted as exciton coupling matrix elements. Here, we present the underlying theory of subsystem TDDFT within the TDA as well as first applications. Since for some classes of pigments, such as linear polyenes and carotenoids, TDA has been reported to perform better than full TDDFT, we also report applications of this formalism to exciton couplings in dimers of such pigments and in mixed bacteriochlorophyll-carotenoid systems. The improved description of the exciton couplings can be traced back to a more balanced description of the involved local excitations.


Asunto(s)
Teoría Cuántica , Bacterioclorofilas/química , Carotenoides/química , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA