Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Oral Health ; 24(1): 558, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741081

RESUMEN

BACKGROUND: We investigated the efficacy of two different cold atmospheric pressure jet plasma devices (CAP09 and CAPmed) and an air polishing device with glycine powder (AP) either applied as monotherapies or combined therapies (AP + CAP09; AP + CAPmed), in microbial biofilm removal from discs with anodised titanium surface. METHODS: Discs covered with 7-day-old microbial biofilm were treated either with CAP09, CAPmed, AP, AP + CAP09 or AP + CAPmed and compared with negative and positive controls. Biofilm removal was assessed with flourescence and electron microscopy immediately after treatment and after 5 days of reincubation of the treated discs. RESULTS: Treatment with CAP09 or CAPmed did not lead to an effective biofilm removal, whereas treatment with AP detached the complete biofilm, which however regrew to baseline magnitude after 5 days of reincubation. Both combination therapies (AP + CAP09 and AP + CAPmed) achieved a complete biofilm removal immediately after cleaning. However, biofilm regrew after 5 days on 50% of the discs treated with the combination therapy. CONCLUSION: AP treatment alone can remove gross biofilm immediately from anodised titanium surfaces. However, it did not impede regrowth after 5 days, because microorganisms were probably hidden in holes and troughs, from which they could regrow, and which were inaccessible to AP. The combination of AP and plasma treatment probably removed or inactivated microorganisms also from these hard to access spots. These results were independent of the choice of plasma device.


Asunto(s)
Biopelículas , Implantes Dentales , Gases em Plasma , Propiedades de Superficie , Titanio , Biopelículas/efectos de los fármacos , Titanio/química , Implantes Dentales/microbiología , Pulido Dental/métodos , Glicina , Humanos , Técnicas In Vitro , Microscopía Electrónica de Rastreo , Níquel
2.
J Appl Toxicol ; 44(2): 272-286, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37655636

RESUMEN

The immortalized mouse liver cell line TAMH has been described as a valuable tool for studying hepatotoxic mechanisms, but until now, it has only been reported to grow as a monolayer in culture. However, culturing hepatocytes as three-dimensional (3D) spheroids has been shown to result in improved liver-specific functions (e.g., metabolic capacity) by better mimicking the in vivo environment. This approach may lead to more reliable detection of drug-induced liver injury (DILI) in the early phase of drug discovery, preventing post-marketing drug withdrawals. Here, we investigated the cultivation of TAMH as 3D spheroids, characterizing them with optical and transmission electron microscopy as well as analyzing their gene expression at mRNA level (especially drug-metabolizing enzymes) compared to TAMH monolayer. In addition, comparisons were made with spheroids grown from the human hepatoblastoma cell line HepG2, another current spheroid model. The results indicate that TAMH spheroids express hepatic structures and show elevated levels of some of the key phase I and II drug-metabolizing enzymes, in contrast to TAMH monolayer. The in vitro hepatotoxic potencies of the drugs acetaminophen and flupirtine maleate were found to be very similar between TAMH spheroidal and the monolayer cultures. Both the advantages and disadvantages of TAMH spheroids as an in vitro hepatotoxicity model compared to monolayer model are discussed.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Esferoides Celulares , Ratones , Animales , Humanos , Factor de Crecimiento Transformador alfa/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
3.
mBio ; 15(1): e0022523, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38112465

RESUMEN

IMPORTANCE: The prevalence of multidrug-resistant Staphylococcus aureus is of global concern, and vaccines are urgently needed. The iron-regulated surface determinant protein B (IsdB) of S. aureus was investigated as a vaccine candidate because of its essential role in bacterial iron acquisition but failed in clinical trials despite strong immunogenicity. Here, we reveal an unexpected second function for IsdB in pathogen-host interaction: the bacterial fitness factor IsdB triggers a strong inflammatory response in innate immune cells via Toll-like receptor 4 and the inflammasome, thus acting as a novel pathogen-associated molecular pattern of S. aureus. Our discovery contributes to a better understanding of how S. aureus modulates the immune response, which is necessary for vaccine development against the sophisticated pathogen.


Asunto(s)
Proteínas Bacterianas , Proteínas de Transporte de Catión , Citocinas , Staphylococcus aureus Resistente a Meticilina , Proteína con Dominio Pirina 3 de la Familia NLR , Infecciones Estafilocócicas , Receptor Toll-Like 4 , Humanos , Proteínas Bacterianas/inmunología , Caspasa 1/metabolismo , Proteínas de Transporte de Catión/inmunología , Citocinas/metabolismo , Inflamasomas/metabolismo , Hierro/metabolismo , Staphylococcus aureus Resistente a Meticilina/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Infecciones Estafilocócicas/inmunología , Receptor Toll-Like 4/metabolismo
4.
Front Microbiol ; 14: 1232039, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37731930

RESUMEN

Multidrug-resistant gram-negative pathogens such as Escherichia coli have become increasingly difficult to treat and therefore alternative treatment options are needed. Targeting virulence factors like biofilm formation could be one such option. Inhibition of biofilm-related structures like curli and cellulose formation in E. coli has been shown for different phenolic natural compounds like epigallocatechin gallate. This study demonstrates this effect for other structurally unrelated phenolics, namely octyl gallate, scutellarein and wedelolactone. To verify whether these structurally different compounds influence identical pathways of biofilm formation in E. coli a broad comparative RNA-sequencing approach was chosen with additional RT-qPCR to gain initial insights into the pathways affected at the transcriptomic level. Bioinformatical analysis of the RNA-Seq data was performed using DESeq2, BioCyc and KEGG Mapper. The comparative bioinformatics analysis on the pathways revealed that, irrespective of their structure, all compounds mainly influenced similar biological processes. These pathways included bacterial motility, chemotaxis, biofilm formation as well as metabolic processes like arginine biosynthesis and tricarboxylic acid cycle. Overall, this work provides the first insights into the potential mechanisms of action of novel phenolic biofilm inhibitors and highlights the complex regulatory processes of biofilm formation in E. coli.

5.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36675120

RESUMEN

Peri-implantitis-associated inflammation can lead to bone loss and implant failure. Current decontamination measures are ineffective due to the implants' complex geometry and rough surfaces providing niches for microbial biofilms. A modified water jet system (WaterJet) was combined with cold plasma technology (CAP) to achieve superior antimicrobial efficacy compared to cotton gauze treatment. Seven-day-old multi-species-contaminated titanium discs and implants were investigated as model systems. The efficacy of decontamination on implants was determined by rolling the implants over agar and determining colony-forming units supported by scanning electron microscopy image quantification of implant surface features. The inflammatory consequences of mono and combination treatments were investigated with peripheral blood mononuclear cell surface marker expression and chemokine and cytokine release profiles on titanium discs. In addition, titanium discs were assayed using fluorescence microscopy. Cotton gauze was inferior to WaterJet treatment according to all types of analysis. In combination with the antimicrobial effect of CAP, decontamination was improved accordingly. Mono and CAP-combined treatment on titanium surfaces alone did not unleash inflammation. Simultaneously, chemokine and cytokine release was dramatically reduced in samples that had benefited from additional antimicrobial effects through CAP. The combined treatment with WaterJet and CAP potently removed biofilm and disinfected rough titanium implant surfaces. At the same time, non-favorable rendering of the surface structure or its pro-inflammatory potential through CAP was not observed.


Asunto(s)
Antiinfecciosos , Implantes Dentales , Gases em Plasma , Humanos , Titanio/química , Gases em Plasma/farmacología , Gases em Plasma/química , Leucocitos Mononucleares , Propiedades de Superficie , Biopelículas , Antiinfecciosos/farmacología , Inflamación
6.
Sci Rep ; 12(1): 16643, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36198715

RESUMEN

Understanding the nanoparticle-cell interactions in physiological media is vital in determining the biological fate of the nanoparticles (NPs). These interactions depend on the physicochemical properties of the NPs and their colloidal behavior in cell culture media (CCM). Furthermore, the impact of the bioconjugates made by nanoparticle with proteins from CCM on the mechanical properties of cells upon interaction is unknown. Here, we analyzed the time dependent stability of gold nanoparticles (AuNPs) functionalized with citrate, dextran-10, dextrin and chitosan polymers in protein poor- and protein rich CCM. Further, we implemented the high-throughput technology real-time deformability cytometry (RT-DC) to investigate the impact of AuNP-bioconjugates on the cell mechanics of HL60 suspension cells. We found that dextrin-AuNPs form stable bioconjugates in both CCM and have a little impact on cell mechanics, ROS production and cell viability. In contrast, positively charged chitosan-AuNPs were observed to form spherical and non-spherical aggregated conjugates in both CCM and to induce increased cytotoxicity. Citrate- and dextran-10-AuNPs formed spherical and non-spherical aggregated conjugates in protein rich- and protein poor CCM and induced at short incubation times cell stiffening. We anticipate based on our results that dextrin-AuNPs can be used for therapeutic purposes as they show lower cytotoxicity and insignificant changes in cell physiology.


Asunto(s)
Quitosano , Nanopartículas del Metal , Biopolímeros , Técnicas de Cultivo de Célula , Quitosano/química , Citratos , Ácido Cítrico , Dextranos , Dextrinas , Oro/química , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Polímeros , Especies Reactivas de Oxígeno
7.
Microorganisms ; 10(9)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36144337

RESUMEN

We analyzed the proteomic response of the Gram-negative fish pathogen A. salmonicida to iron limitation, an elevated incubation temperature, and the antibiotic florfenicol. Proteins from different subcellular fractions (cytosol, inner membrane, outer membrane, extracellular and outer membrane vesicles) were enriched and analyzed. We identified several iron-regulated proteins that were not reported in the literature for A. salmonicida before. We could also show that hemolysin, an oxidative-stress-resistance chaperone, a putative hemin receptor, an M36 peptidase, and an uncharacterized protein were significantly higher in abundance not only under iron limitation but also with an elevated incubation temperature. This may indicate that these proteins involved in the infection process of A. salmonicida are induced by both factors. The analysis of the outer membrane vesicles (OMVs) with and without applied stresses revealed significant differences in the proteomes. OMVs were smaller and contained more cytoplasmic proteins after antibiotic treatment. After cultivation with low iron availability, several iron-regulated proteins were found in the OMVs, indicating that A. salmonicida OMVs potentially have a function in iron acquisition, as reported for other bacteria. The presence of iron-regulated transporters further indicates that OMVs obtained from 'stressed' bacteria might be suitable vaccine candidates that induce a protective anti-virulence immune response.

8.
mSphere ; 7(5): e0030222, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-35993700

RESUMEN

Amidochelocardin is a broad-spectrum antibiotic with activity against many Gram-positive and Gram-negative bacteria. According to recent data, the antibiotic effect of this atypical tetracycline is directed against the cytoplasmic membrane, which is associated with the dissipation of the membrane potential. Here, we investigated the effect of amidochelocardin on the proteome of Clostridioides difficile to gain insight into the membrane stress physiology of this important anaerobic pathogen. For the first time, the membrane-directed action of amidochelocardin was confirmed in an anaerobic pathogen. More importantly, our results revealed that aromatic compounds potentially play an important role in C. difficile upon dissipation of its membrane potential. More precisely, a simultaneously increased production of enzymes required for the synthesis of chorismate and two putative phenazine biosynthesis proteins point to the production of a hitherto unknown compound in response to membrane depolarization. Finally, increased levels of the ClnAB efflux system and its transcriptional regulator ClnR were found, which were previously found in response to cationic antimicrobial peptides like LL-37. Therefore, our data provide a starting point for a more detailed understanding of C. difficile's way to counteract membrane-active compounds. IMPORTANCE C. difficile is an important anaerobe pathogen causing mild to severe infections of the gastrointestinal tract. To avoid relapse of the infection following antibiotic therapy, antibiotics are needed that efficiently eradicate C. difficile from the intestinal tract. Since C. difficile was shown to be substantially sensitive to membrane-active antibiotics, it has been proposed that membrane-active antibiotics might be promising for the therapy of C. difficile infections. Therefore, we studied the response of C. difficile to amidochelocardin, a membrane-active antibiotic dissipating the membrane potential. Interestingly, C. difficile's response to amidochelocardin indicates a role of aromatic metabolites in mediating stress caused by dissipation of the membrane potential.


Asunto(s)
Clostridioides difficile , Clostridioides , Bacterias Gramnegativas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias Grampositivas , Proteoma , Tetraciclinas/farmacología , Fenazinas/farmacología
9.
Microorganisms ; 10(8)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-36013937

RESUMEN

Four aerobic bacteria with bacteriolytic capabilities were isolated from the brackish water site Strait Uzynaral of Lake Balkhash in Kazakhstan. The morphology and physiology of the bacterial isolates have subsequently been analyzed. Using matrix assisted laser desorption ionization-time of flight mass spectrum and partial 16S rRNA gene sequence analyses, three of the isolates have been identified as Pseudomonas veronii and one as Paenibacillus apiarius. We determined the capability of both species to lyse pre-grown cells of the Gram-negative strains Pseudomonas putida SBUG 24 and Escherichia coli SBUG 13 as well as the Gram-positive strains Micrococcus luteus SBUG 16 and Arthrobacter citreus SBUG 321 on solid media. The bacteriolysis process was analyzed by creating growth curves and electron micrographs of co-cultures with the bacteriolytic isolates and the lysis sensitive strain Arthrobacter citreus SBUG 321 in nutrient-poor liquid media. One metabolite of Paenibacillus apiarius was isolated and structurally characterized by various chemical structure determination methods. It is a novel antibiotic substance.

10.
BMC Oral Health ; 22(1): 157, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35524324

RESUMEN

BACKGROUND: Peri-implantitis therapy is a major problem in implantology. Because of challenging rough implant surface and implant geometry, microorganisms can hide and survive in implant microstructures and impede debridement. We developed a new water jet (WJ) device and a new cold atmospheric pressure plasma (CAP) device to overcome these problems and investigated aspects of efficacy in vitro and safety with the aim to create the prerequisites for a clinical pilot study with these medical devices. METHODS: We compared the efficiency of a single treatment with a WJ or curette and cotton swab (CC) without or with adjunctive use of CAP (WJ + CAP, CC + CAP) to remove biofilm in vitro from rough titanium discs. Treatment efficacy was evaluated by measuring turbidity up to 72 h for bacterial re-growth or spreading of osteoblast-like cells (MG-63) after 5 days with scanning electron microscopy. With respect to application safety, the WJ and CAP instruments were examined according to basic regulations for medical devices. RESULTS: After 96 h of incubation all WJ and CC treated disks were turbid but 67% of WJ + CAP and 46% CC + CAP treated specimens were still clear. The increase in turbidity after WJ treatment was delayed by about 20 h compared to CC treatment. In combination with CAP the cell coverage significantly increased to 82% (WJ + CAP) or 72% (CC + CAP), compared to single treatment 11% (WJ) or 10% (CC). CONCLUSION: The newly developed water jet device effectively removes biofilm from rough titanium surfaces in vitro and, in combination with the new CAP device, biologically acceptable surfaces allow osteoblasts to grow. WJ in combination with CAP leads to cleaner surfaces than the usage of curette and cotton swabs with or without subsequent plasma treatment. Our next step will be a clinical pilot study with these new devices to assess the clinical healing process.


Asunto(s)
Implantes Dentales , Gases em Plasma , Biopelículas , Implantes Dentales/microbiología , Humanos , Microscopía Electrónica de Rastreo , Proyectos Piloto , Gases em Plasma/química , Propiedades de Superficie , Titanio/química , Agua
11.
Front Microbiol ; 13: 814692, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401433

RESUMEN

The anaerobic bacterium Clostridioides difficile represents one of the most problematic pathogens, especially in hospitals. Dysbiosis has been proven to largely reduce colonization resistance against this intestinal pathogen. The beneficial effect of the microbiota is closely associated with the metabolic activity of intestinal microbes such as the ability to transform primary bile acids into secondary ones. However, the basis and the molecular action of bile acids (BAs) on the pathogen are not well understood. We stressed the pathogen with the four most abundant human bile acids: cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA) and lithocholic acid (LCA). Thin layer chromatography (TLC), confocal laser scanning microscopy (CLSM), and electron microscopy (EM) were employed to track the enrichment and destination of bile acids in the bacterial cell. TLC not only revealed a strong accumulation of LCA in C. difficile, but also indicated changes in the composition of membrane lipids in BA-treated cells. Furthermore, morphological changes induced by BAs were determined, most pronounced in the virtually complete loss of flagella in LCA-stressed cells and a flagella reduction after DCA and CDCA challenge. Quantification of both, protein and RNA of the main flagella component FliC proved the decrease in flagella to originate from a change in gene expression on transcriptional level. Notably, the loss of flagella provoked by LCA did not reduce adhesion ability of C. difficile to Caco-2 cells. Most remarkably, extracellular toxin A levels in the presence of BAs showed a similar pattern as flagella expression. That is, CA did not affect toxin expression, whereas lower secretion of toxin A was determined in cells stressed with LCA, DCA or CDCA. In summary, the various BAs were shown to differentially modify virulence determinants, such as flagella expression, host cell adhesion and toxin synthesis. Our results indicate differences of BAs in cellular localization and impact on membrane composition, which could be a reason of their diverse effects. This study is a starting point in the elucidation of the molecular mechanisms underlying the differences in BA action, which in turn can be vital regarding the outcome of a C. difficile infection.

12.
Sci Rep ; 12(1): 3003, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35194033

RESUMEN

Bacterial kidney disease (BKD) is a chronic bacterial disease affecting both wild and farmed salmonids. The causative agent for BKD is the Gram-positive fish pathogen Renibacterium salmoninarum. As treatment and prevention of BKD have proven to be difficult, it is important to know and identify the key bacterial proteins that interact with the host. We used subcellular fractionation to report semi-quantitative data for the cytosolic, membrane, extracellular, and membrane vesicle (MV) proteome of R. salmoninarum. These data can aid as a backbone for more targeted experiments regarding the development of new drugs for the treatment of BKD. Further analysis was focused on the MV proteome, where both major immunosuppressive proteins P57/Msa and P22 and proteins involved in bacterial adhesion were found in high abundance. Interestingly, the P22 protein was relatively enriched only in the extracellular and MV fraction, implicating that MVs may play a role in host-pathogen interaction. Compared to the other subcellular fractions, the MVs were also relatively enriched in lipoproteins and all four cell wall hydrolases belonging to the New Lipoprotein C/Protein of 60 kDa (NlpC/P60) family were detected, suggesting an involvement in the formation of the MVs.


Asunto(s)
Vesículas Citoplasmáticas/fisiología , Proteoma/genética , Proteómica , Virulencia , Animales , Adhesión Bacteriana/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Vesículas Citoplasmáticas/metabolismo , Enfermedades de los Peces/microbiología , Peces/microbiología , Interacciones Huésped-Parásitos , Enfermedades Renales/microbiología , Enfermedades Renales/veterinaria , Lipoproteínas/metabolismo , Renibacterium/citología , Renibacterium/genética , Renibacterium/patogenicidad , Fracciones Subcelulares/fisiología , Virulencia/genética
13.
Clin Oral Investig ; 26(3): 3179-3187, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34988694

RESUMEN

OBJECTIVES: Biofilm removal is the decisive factor for the control of peri-implantitis. Cold atmospheric pressure plasma (CAP) can become an effective aid due to its ability to destroy and to inactivate bacterial biofilm residues. This study evaluated the cleaning efficiency of CAP, and air-polishing with glycine (APG) or erythritol (APE) containing powders alone or in combination with CAP (APG + CAP, APE + CAP) on sandblasted/acid etched, and anodised titanium implant surface. MATERIALS AND METHODS: On respective titanium discs, a 7-day ex vivo human biofilm was grown. Afterwards, the samples were treated with CAP, APG, APE, APG + CAP, and APE + CAP. Sterile and untreated biofilm discs were used for verification. Directly after treatment and after 5 days of incubation in medium at 37 °C, samples were prepared for examination by fluorescence microscopy. The relative biofilm fluorescence was measured for quantitative analyses. RESULTS: Air-polishing with or without CAP removed biofilms effectively. The combination of air-polishing with CAP showed the best cleaning results compared to single treatments, even on day 5. Immediately after treatment, APE + CAP showed insignificant higher cleansing efficiency than APG + CAP. CONCLUSIONS: CAP supports mechanical cleansing and disinfection to remove and inactivate microbial biofilm on implant surfaces significantly. Here, the type of the powder was not important. The highest cleansing results were obtained on sandblasted/etched surfaces. CLINICAL RELEVANCE: Microbial residuals impede wound healing and re-osseointegration after peri-implantitis treatment. Air-polishing treatment removes biofilms very effectively, but not completely. In combination with CAP, microbial free surfaces can be achieved. The tested treatment regime offers an advantage during treatment of peri-implantitis.


Asunto(s)
Implantes Dentales , Periimplantitis , Gases em Plasma , Biopelículas , Implantes Dentales/microbiología , Humanos , Periimplantitis/microbiología , Polvos , Propiedades de Superficie , Titanio/química
14.
PLoS One ; 16(12): e0260878, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34879092

RESUMEN

Proper and size selective blood filtration in the kidney depends on an intact morphology of podocyte foot processes. Effacement of interdigitating podocyte foot processes in the glomeruli causes a leaky filtration barrier resulting in proteinuria followed by the development of chronic kidney diseases. Since the function of the filtration barrier is depending on a proper actin cytoskeleton, we studied the role of the important actin-binding protein palladin for podocyte morphology. Podocyte-specific palladin knockout mice on a C57BL/6 genetic background (PodoPalldBL/6-/-) were back crossed to a 129 genetic background (PodoPalld129-/-) which is known to be more sensitive to kidney damage. Then we analyzed the morphological changes of glomeruli and podocytes as well as the expression of the palladin-binding partners Pdlim2, Lasp-1, Amotl1, ezrin and VASP in 6 and 12 months old mice. PodoPalld129-/- mice in 6 and 12 months showed a marked dilatation of the glomerular tuft and a reduced expression of the mesangial marker protein integrin α8 compared to controls of the same age. Furthermore, ultrastructural analysis showed significantly more podocytes with morphological deviations like an enlarged sub-podocyte space and regions with close contact to parietal epithelial cells. Moreover, PodoPalld129-/- of both age showed a severe effacement of podocyte foot processes, a significantly reduced expression of pLasp-1 and Pdlim2, and significantly reduced mRNA expression of Pdlim2 and VASP, three palladin-interacting proteins. Taken together, the results show that palladin is essential for proper podocyte morphology in mice with a 129 background.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/fisiología , Antecedentes Genéticos , Proteínas de Homeodominio/metabolismo , Proteínas con Dominio LIM/metabolismo , Proteínas de Microfilamentos/metabolismo , Podocitos/metabolismo , Citoesqueleto de Actina , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas del Citoesqueleto/genética , Proteínas de Homeodominio/genética , Riñón/metabolismo , Proteínas con Dominio LIM/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/genética , Fosforilación , Podocitos/citología
16.
Mol Plant Pathol ; 22(8): 939-953, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33955130

RESUMEN

Amphidiploid fungal Verticillium longisporum strains Vl43 and Vl32 colonize the plant host Brassica napus but differ in their ability to cause disease symptoms. These strains represent two V. longisporum lineages derived from different hybridization events of haploid parental Verticillium strains. Vl32 and Vl43 carry same-sex mating-type genes derived from both parental lineages. Vl32 and Vl43 similarly colonize and penetrate plant roots, but asymptomatic Vl32 proliferation in planta is lower than virulent Vl43. The highly conserved Vl43 and Vl32 genomes include less than 1% unique genes, and the karyotypes of 15 or 16 chromosomes display changed genetic synteny due to substantial genomic reshuffling. A 20 kb Vl43 lineage-specific (LS) region apparently originating from the Verticillium dahliae-related ancestor is specific for symptomatic Vl43 and encodes seven genes, including two putative transcription factors. Either partial or complete deletion of this LS region in Vl43 did not reduce virulence but led to induction of even more severe disease symptoms in rapeseed. This suggests that the LS insertion in the genome of symptomatic V. longisporum Vl43 mediates virulence-reducing functions, limits damage on the host plant, and therefore tames Vl43 from being even more virulent.


Asunto(s)
Enfermedades de las Plantas , Verticillium , Ascomicetos , Genómica , Enfermedades de las Plantas/genética , Verticillium/genética , Virulencia/genética
17.
Environ Microbiol ; 23(6): 3149-3163, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33876569

RESUMEN

Outer membrane extensions are common in many marine bacteria. However, the function of these surface enlargements or extracellular compartments is poorly understood. Using a combined approach of microscopy and subproteome analyses, we therefore examined Pseudoalteromonas distincta ANT/505, an Antarctic polysaccharide degrading gamma-proteobacterium. P. distincta produced outer membrane vesicles (MV) and vesicle chains (VC) on polysaccharide and non-polysaccharide carbon sources during the exponential and stationary growth phase. Surface structures of carbohydrate-grown cells were equipped with increased levels of highly substrate-specific proteins. At the same time, proteins encoded in all other polysaccharide degradation-related genomic regions were also detected in MV and VC samples under all growth conditions, indicating a basal expression. In addition, two alkaline phosphatases were highly abundant under non-limiting phosphate conditions. Surface structures may thus allow rapid sensing and fast responses in nutritionally deprived environments. It may also facilitate efficient carbohydrate processing and reduce loss of substrates and enzymes by diffusion as important adaptions to the aquatic ecosystem.


Asunto(s)
Ecosistema , Pseudoalteromonas , Regiones Antárticas , Polisacáridos
18.
Cells ; 10(2)2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33670309

RESUMEN

Clostridioides difficile is the leading cause of antibiotic-associated diarrhea but can also result in more serious, life-threatening conditions. The incidence of C. difficile infections in hospitals is increasing, both in frequency and severity, and antibiotic-resistant C. difficile strains are advancing. Against this background antimicrobial peptides (AMPs) are an interesting alternative to classic antibiotics. Information on the effects of AMPs on C. difficile will not only enhance the knowledge for possible biomedical application but may also provide insights into mechanisms of C. difficile to adapt or counteract AMPs. This study applies state-of-the-art mass spectrometry methods to quantitatively investigate the proteomic response of C. difficile 630∆erm to sublethal concentrations of the AMP nisin allowing to follow the cellular stress adaptation in a time-resolved manner. The results do not only point at a heavy reorganization of the cellular envelope but also resulted in pronounced changes in central cellular processes such as carbohydrate metabolism. Further, the number of flagella per cell was increased during the adaptation process. The potential involvement of flagella in nisin adaptation was supported by a more resistant phenotype exhibited by a non-motile but hyper-flagellated mutant.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Antibacterianos/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Nisina/farmacología , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas Bacterianas/metabolismo , Clostridioides/metabolismo , Clostridioides difficile/metabolismo , Nisina/genética , Nisina/metabolismo , Proteínas Citotóxicas Formadoras de Poros/genética , Proteómica/métodos
19.
Elife ; 102021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33404502

RESUMEN

The hydrothermal vent tubeworm Riftia pachyptila hosts a single 16S rRNA phylotype of intracellular sulfur-oxidizing symbionts, which vary considerably in cell morphology and exhibit a remarkable degree of physiological diversity and redundancy, even in the same host. To elucidate whether multiple metabolic routes are employed in the same cells or rather in distinct symbiont subpopulations, we enriched symbionts according to cell size by density gradient centrifugation. Metaproteomic analysis, microscopy, and flow cytometry strongly suggest that Riftia symbiont cells of different sizes represent metabolically dissimilar stages of a physiological differentiation process: While small symbionts actively divide and may establish cellular symbiont-host interaction, large symbionts apparently do not divide, but still replicate DNA, leading to DNA endoreduplication. Moreover, in large symbionts, carbon fixation and biomass production seem to be metabolic priorities. We propose that this division of labor between smaller and larger symbionts benefits the productivity of the symbiosis as a whole.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Poliquetos/microbiología , Simbiosis , Animales , Bacterias/aislamiento & purificación , Respiraderos Hidrotermales/microbiología
20.
J Biophotonics ; 13(12): e202000221, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32931142

RESUMEN

Reinfection in endodontically treated teeth is linked to the complexity of the root canal system, which is problematic to reach with conventional disinfection methods. As plasma is expected to have the ability to sanitize narrow areas, the aim of this study was to analyze the effect of cold atmospheric pressure plasma (CAP) on Candida albicans in root canals of extracted human teeth. CAP was applied as mono treatment and in combination with standard endodontic disinfectants (sodium hypochlorite, chlorhexidine and octenidine). Disinfection efficiency was evaluated as reduction of the logarithm of colony forming units per milliliter (log10 CFU/mL) supported by scanning electron microscopy as imaging technique. Plasma alone showed the highest reduction of log10 CFU, suggesting the best disinfection properties of all tested agents.


Asunto(s)
Candida albicans , Gases em Plasma , Presión Atmosférica , Cavidad Pulpar , Desinfección , Humanos , Gases em Plasma/farmacología , Irrigantes del Conducto Radicular , Preparación del Conducto Radicular , Hipoclorito de Sodio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...