Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioinform Adv ; 4(1): vbae074, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841126

RESUMEN

Motivation: Identifying cis-regulatory elements (CREs) is crucial for analyzing gene regulatory networks. Next generation sequencing methods were developed to identify CREs but represent a considerable expenditure for targeted analysis of few genomic loci. Thus, predicting the outputs of these methods would significantly cut costs and time investment. Results: We present Predmoter, a deep neural network that predicts base-wise Assay for Transposase Accessible Chromatin using sequencing (ATAC-seq) and histone Chromatin immunoprecipitation DNA-sequencing (ChIP-seq) read coverage for plant genomes. Predmoter uses only the DNA sequence as input. We trained our final model on 21 species for 13 of which ATAC-seq data and for 17 of which ChIP-seq data was publicly available. We evaluated our models on Arabidopsis thaliana and Oryza sativa. Our best models showed accurate predictions in peak position and pattern for ATAC- and histone ChIP-seq. Annotating putatively accessible chromatin regions provides valuable input for the identification of CREs. In conjunction with other in silico data, this can significantly reduce the search space for experimentally verifiable DNA-protein interaction pairs. Availability and implementation: The source code for Predmoter is available at: https://github.com/weberlab-hhu/Predmoter. Predmoter takes a fasta file as input and outputs h5, and optionally bigWig and bedGraph files.

2.
Mol Plant ; 16(10): 1547-1563, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37660255

RESUMEN

Photosynthesis in crops and natural vegetation allows light energy to be converted into chemical energy and thus forms the foundation for almost all terrestrial trophic networks on Earth. The efficiency of photosynthetic energy conversion plays a crucial role in determining the portion of incident solar radiation that can be used to generate plant biomass throughout a growth season. Consequently, alongside the factors such as resource availability, crop management, crop selection, maintenance costs, and intrinsic yield potential, photosynthetic energy use efficiency significantly influences crop yield. Photosynthetic efficiency is relevant to sustainability and food security because it affects water use efficiency, nutrient use efficiency, and land use efficiency. This review focuses specifically on the potential for improvements in photosynthetic efficiency to drive a sustainable increase in crop yields. We discuss bypassing photorespiration, enhancing light use efficiency, harnessing natural variation in photosynthetic parameters for breeding purposes, and adopting new-to-nature approaches that show promise for achieving unprecedented gains in photosynthetic efficiency.


Asunto(s)
Fotosíntesis , Fitomejoramiento , Productos Agrícolas , Nutrientes , Seguridad Alimentaria
3.
Plant Cell Environ ; 46(11): 3611-3627, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37431820

RESUMEN

Research on C4 and C3-C4 photosynthesis has attracted significant attention because the understanding of the genetic underpinnings of these traits will support the introduction of its characteristics into commercially relevant crop species. We used a panel of 19 taxa of 18 Brassiceae species with different photosynthesis characteristics (C3 and C3-C4) with the following objectives: (i) create draft genome assemblies and annotations, (ii) quantify orthology levels using synteny maps between all pairs of taxa, (iii) ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠describe the phylogenetic relatedness across all the species, and (iv) track the evolution of C3-C4 intermediate photosynthesis in the Brassiceae tribe. Our results indicate that the draft de novo genome assemblies are of high quality and cover at least 90% of the gene space. Therewith we more than doubled the sampling depth of genomes of the Brassiceae tribe that comprises commercially important as well as biologically interesting species. The gene annotation generated high-quality gene models, and for most genes extensive upstream sequences are available for all taxa, yielding potential to explore variants in regulatory sequences. The genome-based phylogenetic tree of the Brassiceae contained two main clades and indicated that the C3-C4 intermediate photosynthesis has evolved five times independently. Furthermore, our study provides the first genomic support of the hypothesis that Diplotaxis muralis is a natural hybrid of D. tenuifolia and D. viminea. Altogether, the de novo genome assemblies and the annotations reported in this study are a valuable resource for research on the evolution of C3-C4 intermediate photosynthesis.


Asunto(s)
Brassicaceae , Fotosíntesis , Filogenia , Fotosíntesis/genética , Brassicaceae/genética , Genómica
4.
J Exp Bot ; 74(21): 6631-6649, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37392176

RESUMEN

Carbon-concentrating mechanisms enhance the carboxylase efficiency of Rubisco by providing supra-atmospheric concentrations of CO2 in its surroundings. Beside the C4 photosynthesis pathway, carbon concentration can also be achieved by the photorespiratory glycine shuttle which requires fewer and less complex modifications. Plants displaying CO2 compensation points between 10 ppm and 40 ppm are often considered to utilize such a photorespiratory shuttle and are termed 'C3-C4 intermediates'. In the present study, we perform a physiological, biochemical, and anatomical survey of a large number of Brassicaceae species to better understand the C3-C4 intermediate phenotype, including its basic components and its plasticity. Our phylogenetic analysis suggested that C3-C4 metabolism evolved up to five times independently in the Brassicaceae. The efficiency of the pathway showed considerable variation. Centripetal accumulation of organelles in the bundle sheath was consistently observed in all C3-C4-classified taxa, indicating a crucial role for anatomical features in CO2-concentrating pathways. Leaf metabolite patterns were strongly influenced by the individual species, but accumulation of photorespiratory shuttle metabolites glycine and serine was generally observed. Analysis of phosphoenolpyruvate carboxylase activities suggested that C4-like shuttles have not evolved in the investigated Brassicaceae. Convergent evolution of the photorespiratory shuttle indicates that it represents a distinct photosynthesis type that is beneficial in some environments.


Asunto(s)
Brassicaceae , Carbono , Filogenia , Carbono/metabolismo , Brassicaceae/genética , Brassicaceae/metabolismo , Dióxido de Carbono/metabolismo , Fotosíntesis/fisiología , Glicina/genética , Glicina/metabolismo , Hojas de la Planta/metabolismo
5.
J Plant Physiol ; 282: 153928, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36780758

RESUMEN

The entry of carbon dioxide from the atmosphere into the biosphere is mediated by the enzyme Rubisco, which catalyzes the carboxylation of ribulose 1,5-bisphosphate (RuBP) as the entry reaction of the Calvin Benson Bassham cycle (CBBC), leading to the formation of 2 molecules of 3-phosphoglyceric acid (3PGA) per CO2 fixed. 3PGA is reduced to triose phosphates at the expense of NADPH + H+ and ATP that are provided by the photosynthetic light reactions. Triose phosphates are the principal products of the CBBC and the precursors for almost any compound in the biosphere.


Asunto(s)
Fosfatos , Fotosíntesis , Triosas , Ribulosa-Bifosfato Carboxilasa/metabolismo , Dióxido de Carbono
6.
Plant Cell ; 34(10): 3860-3872, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35792867

RESUMEN

Altering plant water use efficiency (WUE) is a promising approach for achieving sustainable crop production in changing climate scenarios. Here, we show that WUE can be tuned by alleles of a single gene discovered in elite maize (Zea mays) breeding material. Genetic dissection of a genomic region affecting WUE led to the identification of the gene ZmAbh4 as causative for the effect. CRISPR/Cas9-mediated ZmAbh4 inactivation increased WUE without growth reductions in well-watered conditions. ZmAbh4 encodes an enzyme that hydroxylates the phytohormone abscisic acid (ABA) and initiates its catabolism. Stomatal conductance is regulated by ABA and emerged as a major link between variation in WUE and discrimination against the heavy carbon isotope (Δ13C) during photosynthesis in the C4 crop maize. Changes in Δ13C persisted in kernel material, which offers an easy-to-screen proxy for WUE. Our results establish a direct physiological and genetic link between WUE and Δ13C through a single gene with potential applications in maize breeding.


Asunto(s)
Ácido Abscísico , Zea mays , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Alelos , Isótopos de Carbono , Fotosíntesis/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/metabolismo , Agua/metabolismo , Zea mays/metabolismo
7.
Plants (Basel) ; 10(5)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925393

RESUMEN

Photorespiration (PR) is a metabolic repair pathway that acts in oxygenic photosynthetic organisms to degrade a toxic product of oxygen fixation generated by the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase. Within the metabolic pathway, energy is consumed and carbon dioxide released. Consequently, PR is seen as a wasteful process making it a promising target for engineering to enhance plant productivity. Transport and channel proteins connect the organelles accomplishing the PR pathway-chloroplast, peroxisome, and mitochondrion-and thus enable efficient flux of PR metabolites. Although the pathway and the enzymes catalyzing the biochemical reactions have been the focus of research for the last several decades, the knowledge about transport proteins involved in PR is still limited. This review presents a timely state of knowledge with regard to metabolite channeling in PR and the participating proteins. The significance of transporters for implementation of synthetic bypasses to PR is highlighted. As an excursion, the physiological contribution of transport proteins that are involved in C4 metabolism is discussed.

8.
Data Brief ; 35: 106922, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33748364

RESUMEN

Moricandia is a genus belonging to the family Brassicaceae. C3 and C3-C4 photosynthesis Moricandia species exist in a close phylogenetic proximity, as well as to Brassica crops. Here, we performed PacBio genome sequencing on M. moricandioides and M. arvensis. The genomes were assembled using Flye assembler, then polished with Illumina reads and reduced duplication with Purge Haplotigs. The total length of genome assemblies of M. moricandioides and M. arvensis was 498 Mbp and 759 Mbp, respectively. These data will be useful for studies of the genetic control of C3-C4 characteristics, therefore gaining new insights into the early evolutionary steps of C4 photosynthesis. Further, it can be integrated into Brassica crop breeding. The data can be accessed at ENA under the project number PRJEB39764.

9.
Front Plant Sci ; 12: 756505, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35116048

RESUMEN

Cleomaceae is closely related to Brassicaceae and includes C3, C3-C4, and C4 species. Thus, this family represents an interesting system for studying the evolution of the carbon concentrating mechanism. However, inadequate genetic information on Cleomaceae limits their research applications. Here, we characterized 22 Cleomaceae accessions [3 genera (Cleoserrata, Gynandropsis, and Tarenaya) and 11 species] in terms of genome size; molecular phylogeny; as well as anatomical, biochemical, and photosynthetic traits. We clustered the species into seven groups based on genome size. Interestingly, despite clear differences in genome size (2C, ranging from 0.55 to 1.3 pg) in Tarenaya spp., this variation was not consistent with phylogenetic grouping based on the internal transcribed spacer (ITS) marker, suggesting the occurrence of multiple polyploidy events within this genus. Moreover, only G. gynandra, which possesses a large nuclear genome, exhibited the C4 metabolism. Among the C3-like species, we observed intra- and interspecific variation in nuclear genome size as well as in biochemical, physiological, and anatomical traits. Furthermore, the C3-like species had increased venation density and bundle sheath cell size, compared to C4 species, which likely predisposed the former lineages to C4 photosynthesis. Accordingly, our findings demonstrate the potential of Cleomaceae, mainly members of Tarenaya, in offering novel insights into the evolution of C4 photosynthesis.

10.
Annu Rev Plant Biol ; 71: 183-215, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32131603

RESUMEN

C4 photosynthesis evolved multiple times independently from ancestral C3 photosynthesis in a broad range of flowering land plant families and in both monocots and dicots. The evolution of C4 photosynthesis entails the recruitment of enzyme activities that are not involved in photosynthetic carbon fixation in C3 plants to photosynthesis. This requires a different regulation of gene expression as well as a different regulation of enzyme activities in comparison to the C3 context. Further, C4 photosynthesis relies on a distinct leaf anatomy that differs from that of C3, requiring a differential regulation of leaf development in C4. We summarize recent progress in the understanding of C4-specific features in evolution and metabolic regulation in the context of C4 photosynthesis.


Asunto(s)
Fotosíntesis , Hojas de la Planta , Plantas
11.
Mol Plant ; 10(6): 878-890, 2017 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-28461269

RESUMEN

Harnessing natural variation in photosynthetic capacity is a promising route toward yield increases, but physiological phenotyping is still too laborious for large-scale genetic screens. Here, we evaluate the potential of leaf reflectance spectroscopy to predict parameters of photosynthetic capacity in Brassica oleracea and Zea mays, a C3 and a C4 crop, respectively. To this end, we systematically evaluated properties of reflectance spectra and found that they are surprisingly similar over a wide range of species. We assessed the performance of a wide range of machine learning methods and selected recursive feature elimination on untransformed spectra followed by partial least squares regression as the preferred algorithm that yielded the highest predictive power. Learning curves of this algorithm suggest optimal species-specific sample sizes. Using the Brassica relative Moricandia, we evaluated the model transferability between species and found that cross-species performance cannot be predicted from phylogenetic proximity. The final intra-species models predict crop photosynthetic capacity with high accuracy. Based on the estimated model accuracy, we simulated the use of the models in selective breeding experiments, and showed that high-throughput photosynthetic phenotyping using our method has the potential to greatly improve breeding success. Our results indicate that leaf reflectance phenotyping is an efficient method for improving crop photosynthetic capacity.


Asunto(s)
Aprendizaje Automático , Hojas de la Planta/metabolismo , Productos Agrícolas/metabolismo , Productos Agrícolas/fisiología , Fenotipo , Fotosíntesis/fisiología , Filogenia
12.
Front Plant Sci ; 8: 442, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28408911

RESUMEN

Sustainable agriculture demands reduced input of man-made nitrogen (N) fertilizer, yet N2 fixation limits the productivity of crops with heterotrophic diazotrophic bacterial symbionts. We investigated floating ferns from the genus Azolla that host phototrophic diazotrophic Nostoc azollae in leaf pockets and belong to the fastest growing plants. Experimental production reported here demonstrated N-fertilizer independent production of nitrogen-rich biomass with an annual yield potential per ha of 1200 kg-1 N fixed and 35 t dry biomass. 15N2 fixation peaked at noon, reaching 0.4 mg N g-1 dry weight h-1. Azolla ferns therefore merit consideration as protein crops in spite of the fact that little is known about the fern's physiology to enable domestication. To gain an understanding of their nitrogen physiology, analyses of fern diel transcript profiles under differing nitrogen fertilizer regimes were combined with microscopic observations. Results established that the ferns adapted to the phototrophic N2-fixing symbionts N. azollae by (1) adjusting metabolically to nightly absence of N supply using responses ancestral to ferns and seed plants; (2) developing a specialized xylem-rich vasculature surrounding the leaf-pocket organ; (3) responding to N-supply by controlling transcripts of genes mediating nutrient transport, allocation and vasculature development. Unlike other non-seed plants, the Azolla fern clock is shown to contain both the morning and evening loops; the evening loop is known to control rhythmic gene expression in the vasculature of seed plants and therefore may have evolved along with the vasculature in the ancestor of ferns and seed plants.

14.
J Exp Bot ; 68(2): 191-206, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28110276

RESUMEN

Evolution of C4 photosynthesis is not distributed evenly in the plant kingdom. Particularly interesting is the situation in the Brassicaceae, because the family contains no C4 species, but several C3-C4 intermediates, mainly in the genus Moricandia Investigation of leaf anatomy, gas exchange parameters, the metabolome, and the transcriptome of two C3-C4 intermediate Moricandia species, M. arvensis and M. suffruticosa, and their close C3 relative M. moricandioides enabled us to unravel the specific C3-C4 characteristics in these Moricandia lines. Reduced CO2 compensation points in these lines were accompanied by anatomical adjustments, such as centripetal concentration of organelles in the bundle sheath, and metabolic adjustments, such as the balancing of C and N metabolism between mesophyll and bundle sheath cells by multiple pathways. Evolution from C3 to C3-C4 intermediacy was probably facilitated first by loss of one copy of the glycine decarboxylase P-protein, followed by dominant activity of a bundle sheath-specific element in its promoter. In contrast to recent models, installation of the C3-C4 pathway was not accompanied by enhanced activity of the C4 cycle. Our results indicate that metabolic limitations connected to N metabolism or anatomical limitations connected to vein density could have constrained evolution of C4 in Moricandia.


Asunto(s)
Evolución Biológica , Brassicaceae/metabolismo , Complejo Glicina-Descarboxilasa/genética , Fotosíntesis , Hojas de la Planta/anatomía & histología , Brassicaceae/anatomía & histología , Brassicaceae/genética , Dióxido de Carbono/metabolismo , Metaboloma , Filogenia , Hojas de la Planta/metabolismo , Transcriptoma
15.
Plant Physiol ; 172(1): 389-404, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27457125

RESUMEN

Flowering time (FTi) control is well examined in the long-day plant Arabidopsis (Arabidopsis thaliana), and increasing knowledge is available for the short-day plant rice (Oryza sativa). In contrast, little is known in the day-neutral and agronomically important crop plant maize (Zea mays). To learn more about FTi and to identify novel regulators in this species, we first compared the time points of floral transition of almost 30 maize inbred lines and show that tropical lines exhibit a delay in flowering transition of more than 3 weeks under long-day conditions compared with European flint lines adapted to temperate climate zones. We further analyzed the leaf transcriptomes of four lines that exhibit strong differences in flowering transition to identify new key players of the flowering control network in maize. We found strong differences among regulated genes between these lines and thus assume that the regulation of FTi is very complex in maize. Especially genes encoding MADS box transcriptional regulators are up-regulated in leaves during the meristem transition. ZmMADS1 was selected for functional studies. We demonstrate that it represents a functional ortholog of the central FTi integrator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) of Arabidopsis. RNA interference-mediated down-regulation of ZmMADS1 resulted in a delay of FTi in maize, while strong overexpression caused an early-flowering phenotype, indicating its role as a flowering activator. Taken together, we report that ZmMADS1 represents a positive FTi regulator that shares an evolutionarily conserved function with SOC1 and may now serve as an ideal stating point to study the integration and variation of FTi pathways also in maize.


Asunto(s)
Flores/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Proteínas de Plantas/genética , Zea mays/genética , Secuencia de Aminoácidos , Regulación hacia Abajo , Flores/crecimiento & desarrollo , Perfilación de la Expresión Génica/métodos , Meristema/genética , Meristema/crecimiento & desarrollo , Microscopía Confocal , Fotoperiodo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Factores de Tiempo , Regulación hacia Arriba , Zea mays/clasificación , Zea mays/crecimiento & desarrollo
16.
Curr Opin Plant Biol ; 31: 83-90, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27082280

RESUMEN

RNA-seq, the measurement of steady-state RNA levels by next generation sequencing, has enabled quantitative transcriptome analyses of complex traits in many species without requiring the parallel sequencing of their genomes. The complex trait of C4 photosynthesis, which increases photosynthetic efficiency via a biochemical pump that concentrates CO2 around RubisCO, has evolved convergently multiple times. Due to these interesting properties, C4 photosynthesis has been analyzed in a series of comparative RNA-seq projects. These projects compared both species with and without the C4 trait and different tissues or organs within a C4 plant. The RNA-seq studies were evaluated by comparing to earlier single gene studies. The studies confirmed the marked changes expected for C4 signature genes, but also revealed numerous new players in C4 metabolism showing that the C4 cycle is more complex than previously thought, and suggesting modes of integration into the underlying C3 metabolism.


Asunto(s)
ARN de Planta/metabolismo , Dióxido de Carbono/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Fotosíntesis/genética , Fotosíntesis/fisiología , Ribulosa-Bifosfato Carboxilasa/genética , Ribulosa-Bifosfato Carboxilasa/metabolismo
17.
Plant Sci ; 246: 119-127, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26993242

RESUMEN

Plant cystatins are naturally occurring protease inhibitors that prevent proteolysis by papain-like cysteine proteases. Their protective action against environmental stresses has been relatively well characterised. Still, there is a need to greatly improve both potency and specificity based on the current rather poor performance of cystatins in biotechnological applications. Research in creating more potent and specific cystatins, including amino acid substitutions in either conserved cystatin motifs and/or at variable amino acid sites, is reviewed. Existing gaps for better understanding of cystatin-protease interactions are further explored. Current knowledge on multi-cystatins or hybrid protease inhibitors involving cystatins as an additional option for cystatin engineering is further outlined along with the nuances of how cystatins with rather unusual amino acid sequences might actually help in cystatin engineering. Finally, future opportunities for application of cystatins are highlighted which include applications in genetically modified transgenic plants for environmental stress protection and also as nutraceuticals, as part of more nutritious food. Further opportunities might also include the possible management of diseases and disorders, often associated with lifestyle changes, and the most immediate and promising application which is inclusion into plant-based recombinant protein production platforms.


Asunto(s)
Cistatinas/metabolismo , Ingeniería de Proteínas/métodos , Inhibidores de Cisteína Proteinasa/farmacología , Proteínas Recombinantes/metabolismo
18.
Plant Cell Physiol ; 57(5): 881-9, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26893471

RESUMEN

C4 photosynthesis enables high photosynthetic energy conversion efficiency as well as high nitrogen and water use efficiencies. Given the multitude of biochemical, structural and molecular changes in comparison with C3 photosynthesis, it appears unlikely that such a complex trait would evolve in a single step. C4 photosynthesis is therefore believed to have evolved from the ancestral C3 state via intermediary stages. Consequently, the identification and detailed characterization of plant species representing transitory states between C3 and C4 is important for the reconstruction of the sequence of evolutionary events, especially since C4 evolution occurred in very different phylogenetic backgrounds. There is also significant interest in engineering of C4 or at least C4-like elements into C3 crop plants. A detailed and mechanistic understanding of C3-C4 intermediates is likely to provide guidance for the experimental design of such approaches. Here we provide an overview on the most relevant results obtained on C3-C4 intermediates to date. Recent knowledge gains in this field will be described in more detail. We thereby concentrate especially on biochemical and physiological work. Finally, we will provide a perspective and outlook on the continued importance of research on C3-C4 intermediates.


Asunto(s)
Fotosíntesis , Plantas/genética , Evolución Biológica , Ciclo del Carbono , Respiración de la Célula , Luz , Nitrógeno/metabolismo , Especificidad de Órganos , Fenotipo , Plantas/metabolismo , Plantas/efectos de la radiación , Especificidad de la Especie , Agua/metabolismo
19.
Plant Cell Environ ; 38(8): 1591-612, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25630535

RESUMEN

Most terrestrial plants benefit from the symbiosis with arbuscular mycorrhizal fungi (AMF) mainly under nutrient-limited conditions. Here the crop plant Zea mays was grown with and without AMF in a bi-compartmented system separating plant and phosphate (Pi) source by a hyphae-permeable membrane. Thus, Pi was preferentially taken up via the mycorrhizal Pi uptake pathway while other nutrients were ubiquitously available. To study systemic effects of mycorrhizal Pi uptake on leaf status, leaves of these plants that display an increased biomass in the presence of AMF were subjected to simultaneous ionomic, transcriptomic and metabolomic analyses. We observed robust changes of the leaf elemental composition, that is, increase of P, S and Zn and decrease of Mn, Co and Li concentration in mycorrhizal plants. Although changes in anthocyanin and lipid metabolism point to an improved P status, a global increase in C versus N metabolism highlights the redistribution of metabolic pools including carbohydrates and amino acids. Strikingly, an induction of systemic defence gene expression and concomitant accumulation of secondary metabolites such as the terpenoids alpha- and beta-amyrin suggest priming of mycorrhizal maize leaves as a mycorrhiza-specific response. This work emphasizes the importance of AM symbiosis for the physiological status of plant leaves and could lead to strategies for optimized breeding of crop species with high growth potential.


Asunto(s)
Micorrizas/metabolismo , Simbiosis , Zea mays/metabolismo , Antocianinas/metabolismo , Biomasa , Carbono/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Metaboloma/efectos de los fármacos , Metaboloma/genética , Análisis Multivariante , Micorrizas/efectos de los fármacos , Nitrógeno/metabolismo , Fenotipo , Fosfatos/metabolismo , Fotosíntesis/efectos de los fármacos , Fotosíntesis/genética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Análisis de Componente Principal , Simbiosis/efectos de los fármacos , Simbiosis/genética , Transcripción Genética/efectos de los fármacos , Zea mays/efectos de los fármacos , Zea mays/genética , Zea mays/crecimiento & desarrollo
20.
Bioengineered ; 5(1): 15-20, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-23778319

RESUMEN

Plants are increasingly used as alternative expression hosts for the production of recombinant proteins offering many advantages including higher biomass and the ability to perform post-translational modifications on complex proteins. Key challenges for optimized accumulation of recombinant proteins in a plant system still remain, including endogenous plant proteolytic activity, which may severely compromise recombinant protein stability. Several strategies have recently been applied to improve protein stability by limiting protease action such as recombinant protein production in various sub-cellular compartments or application of protease inhibitors to limit protease action. A short update on the current strategies applied is provided here, with particular focus on sub-cellular sites previously selected for recombinant protein production and the co-expression of protease inhibitors to limit protease activity.


Asunto(s)
Nicotiana/genética , Células Vegetales/metabolismo , Plantas Modificadas Genéticamente/genética , Procesamiento Proteico-Postraduccional , Transgenes , Compartimento Celular , Expresión Génica , Ingeniería Genética/métodos , Péptido Hidrolasas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Inhibidores de Proteasas/metabolismo , Estabilidad Proteica , Proteolisis , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Nicotiana/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...