Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem ; 10(5): 1553-1575, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38827435

RESUMEN

Natural light-harvesting systems spatially organize densely packed dyes in different configurations to either transport excitons or convert them into charge photoproducts, with high efficiency. In contrast, artificial photosystems like organic solar cells and light-emitting diodes lack this fine structural control, limiting their efficiency. Thus, biomimetic multi-dye systems are needed to organize dyes with the sub-nanometer spatial control required to sculpt resulting photoproducts. Here, we synthesize 11 distinct perylene diimide (PDI) dimers integrated into DNA origami nanostructures and identify dimer architectures that offer discrete control over exciton transport versus charge separation. The large structural-space and site-tunability of origami uniquely provides controlled PDI dimer packing to form distinct excimer photoproducts, which are sensitive to interdye configurations. In the future, this platform enables large-scale programmed assembly of dyes mimicking natural systems to sculpt distinct photophysical products needed for a broad range of optoelectronic devices, including solar energy converters and quantum information processors.

3.
J Biol Chem ; 300(3): 105783, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395309

RESUMEN

Poly(ethylene terephthalate) (PET) is a major plastic polymer utilized in the single-use and textile industries. The discovery of PET-degrading enzymes (PETases) has led to an increased interest in the biological recycling of PET in addition to mechanical recycling. IsPETase from Ideonella sakaiensis is a candidate catalyst, but little is understood about its structure-function relationships with regards to PET degradation. To understand the effects of mutations on IsPETase productivity, we develop a directed evolution assay to identify mutations beneficial to PET film degradation at 30 °C. IsPETase also displays enzyme concentration-dependent inhibition effects, and surface crowding has been proposed as a causal phenomenon. Based on total internal reflectance fluorescence microscopy and adsorption experiments, IsPETase is likely experiencing crowded conditions on PET films. Molecular dynamics simulations of IsPETase variants reveal a decrease in active site flexibility in free enzymes and reduced probability of productive active site formation in substrate-bound enzymes under crowding. Hence, we develop a surface crowding model to analyze the biochemical effects of three hit mutations (T116P, S238N, S290P) that enhanced ambient temperature activity and/or thermostability. We find that T116P decreases susceptibility to crowding, resulting in higher PET degradation product accumulation despite no change in intrinsic catalytic rate. In conclusion, we show that a macromolecular crowding-based biochemical model can be used to analyze the effects of mutations on properties of PETases and that crowding behavior is a major property to be targeted for enzyme engineering for improved PET degradation.


Asunto(s)
Burkholderiales , Hidrolasas , Tereftalatos Polietilenos , Hidrolasas/química , Hidrolasas/genética , Hidrolasas/metabolismo , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo , Reciclaje , Cinética , Burkholderiales/enzimología , Modelos Químicos
4.
Sci Adv ; 9(51): eadj0807, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38134273

RESUMEN

Plants capture and convert solar energy in a complex network of membrane proteins. Under high light, the luminal pH drops and induces a reorganization of the protein network, particularly clustering of the major light-harvesting complex (LHCII). While the structures of the network have been resolved in exquisite detail, the thermodynamics that control the assembly and reorganization had not been determined, largely because the interaction energies of membrane proteins have been inaccessible. Here, we describe a method to quantify these energies and its application to LHCII. Using single-molecule measurements, LHCII proteoliposomes, and statistical thermodynamic modeling, we quantified the LHCII-LHCII interaction energy as ~-5 kBT at neutral pH and at least -7 kBT at acidic pH. These values revealed an enthalpic thermodynamic driving force behind LHCII clustering. Collectively, this work captures the interactions that drive the organization of membrane protein networks from the perspective of equilibrium statistical thermodynamics, which has a long and rich tradition in biology.


Asunto(s)
Complejos de Proteína Captadores de Luz , Tilacoides , Complejos de Proteína Captadores de Luz/metabolismo , Tilacoides/metabolismo
5.
Chem Sci ; 14(45): 13140-13150, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38023502

RESUMEN

Transition metal-based charge-transfer complexes represent a broad class of inorganic compounds with diverse photochemical applications. Charge-transfer complexes based on earth-abundant elements have been of increasing interest, particularly the canonical [Fe(bpy)3]2+. Photoexcitation into the singlet metal-ligand charge transfer (1MLCT) state is followed by relaxation first to the ligand-field manifold and then to the ground state. While these dynamics have been well-studied, processes within the MLCT manifold that facilitate and/or compete with relaxation have been more elusive. We applied ultrafast two-dimensional electronic spectroscopy (2DES) to disentangle the dynamics immediately following MLCT excitation of this compound. First, dynamics ascribed to relaxation out of the initially formed 1MLCT state was found to correlate with the inertial response time of the solvent. Second, the additional dimension of the 2D spectra revealed a peak consistent with a ∼20 fs 1MLCT → 3MLCT intersystem crossing process. These two observations indicate that the complex simultaneously undergoes intersystem crossing and direct conversion to ligand-field state(s). Resolution of these parallel pathways in this prototypical earth-abundant complex highlights the ability of 2DES to deconvolve the otherwise obscured excited-state dynamics of charge-transfer complexes.

7.
Nat Commun ; 14(1): 4650, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37532717

RESUMEN

Photosynthetic organisms transport and convert solar energy with near-unity quantum efficiency using large protein supercomplexes held in flexible membranes. The individual proteins position chlorophylls to tight tolerances considered critical for fast and efficient energy transfer. The variability in protein organization within the supercomplexes, and how efficiency is maintained despite variability, had been unresolved. Here, we report on structural heterogeneity in the 2-MDa cyanobacterial PSI-IsiA photosynthetic supercomplex observed using Cryo-EM, revealing large-scale variances in the positions of IsiA relative to PSI. Single-molecule measurements found efficient IsiA-to-PSI energy transfer across all conformations, along with signatures of transiently decoupled IsiA. Structure based calculations showed that rapid IsiA-to-PSI energy transfer is always maintained, and even increases by three-fold in rare conformations via IsiA-specific chls. We postulate that antennae design mitigates structural fluctuations, providing a mechanism for robust energy transfer in the flexible membrane.


Asunto(s)
Cianobacterias , Complejo de Proteína del Fotosistema I , Complejo de Proteína del Fotosistema I/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Proteínas Bacterianas/metabolismo , Fotosíntesis , Cianobacterias/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(28): e2220477120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399405

RESUMEN

In photosynthesis, absorbed light energy transfers through a network of antenna proteins with near-unity quantum efficiency to reach the reaction center, which initiates the downstream biochemical reactions. While the energy transfer dynamics within individual antenna proteins have been extensively studied over the past decades, the dynamics between the proteins are poorly understood due to the heterogeneous organization of the network. Previously reported timescales averaged over such heterogeneity, obscuring individual interprotein energy transfer steps. Here, we isolated and interrogated interprotein energy transfer by embedding two variants of the primary antenna protein from purple bacteria, light-harvesting complex 2 (LH2), together into a near-native membrane disc, known as a nanodisc. We integrated ultrafast transient absorption spectroscopy, quantum dynamics simulations, and cryogenic electron microscopy to determine interprotein energy transfer timescales. By varying the diameter of the nanodiscs, we replicated a range of distances between the proteins. The closest distance possible between neighboring LH2, which is the most common in native membranes, is 25 Šand resulted in a timescale of 5.7 ps. Larger distances of 28 to 31 Šresulted in timescales of 10 to 14 ps. Corresponding simulations showed that the fast energy transfer steps between closely spaced LH2 increase transport distances by ∼15%. Overall, our results introduce a framework for well-controlled studies of interprotein energy transfer dynamics and suggest that protein pairs serve as the primary pathway for the efficient transport of solar energy.


Asunto(s)
Complejos de Proteína Captadores de Luz , Proteobacteria , Proteobacteria/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Fotosíntesis , Análisis Espectral , Transferencia de Energía
9.
Acc Chem Res ; 56(15): 2051-2061, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37345736

RESUMEN

Excitons are the molecular-scale currency of electronic energy. Control over excitons enables energy to be directed and harnessed for light harvesting, electronics, and sensing. Excitonic circuits achieve such control by arranging electronically active molecules to prescribe desired spatiotemporal dynamics. Photosynthetic solar energy conversion is a canonical example of the power of excitonic circuits, where chromophores are positioned in a protein scaffold to perform efficient light capture, energy transport, and charge separation. Synthetic systems that aim to emulate this functionality include self-assembled aggregates, molecular crystals, and chromophore-modified proteins. While the potential of this approach is clear, these systems lack the structural precision to control excitons or even test the limits of their power. In recent years, DNA origami has emerged as a designer material that exploits biological building blocks to construct nanoscale architectures. The structural precision afforded by DNA origami has enabled the pursuit of naturally inspired organizational principles in a highly precise and scalable manner. In this Account, we describe recent developments in DNA-based platforms that spatially organize chromophores to construct tunable excitonic systems. The high fidelity of DNA base pairing enables the formation of programmable nanoscale architectures, and sequence-specific placement allows for the precise positioning of chromophores within the DNA structure. The integration of a wide range of chromophores across the visible spectrum introduces spectral tunability. These excitonic DNA-chromophore assemblies not only serve as model systems for light harvesting, solar conversion, and sensing but also lay the groundwork for the integration of coupled chromophores into larger-scale nucleic acid architectures.We have used this approach to generate DNA-chromophore assemblies of strongly coupled delocalized excited states through both sequence-specific self-assembly and the covalent attachment of chromophores. These strategies have been leveraged to independently control excitonic coupling and system-bath interaction, which together control energy transfer. We then extended this framework to identify how scaffold configurations can steer the formation of symmetry-breaking charge transfer states, paving the way toward the design of dual light-harvesting and charge separation DNA machinery. In an orthogonal application, we used the programmability of DNA chromophore assemblies to change the optical emission properties of strongly coupled dimers, generating a series of fluorophore-modified constructs with separable emission properties for fluorescence assays. Upcoming advances in the chemical modification of nucleotides, design of large-scale DNA origami, and predictive computational methods will aid in constructing excitonic assemblies for optical and computing applications. Collectively, the development of DNA-chromophore assemblies as a platform for excitonic circuitry offers a pathway to identifying and applying design principles for light harvesting and molecular electronics.


Asunto(s)
Colorantes Fluorescentes , Fotosíntesis , Transferencia de Energía , ADN/química
10.
Nature ; 619(7969): 300-304, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37316658

RESUMEN

Photosynthesis is generally assumed to be initiated by a single photon1-3 from the Sun, which, as a weak light source, delivers at most a few tens of photons per nanometre squared per second within a chlorophyll absorption band1. Yet much experimental and theoretical work over the past 40 years has explored the events during photosynthesis subsequent to absorption of light from intense, ultrashort laser pulses2-15. Here, we use single photons to excite under ambient conditions the light-harvesting 2 (LH2) complex of the purple bacterium Rhodobacter sphaeroides, comprising B800 and B850 rings that contain 9 and 18 bacteriochlorophyll molecules, respectively. Excitation of the B800 ring leads to electronic energy transfer to the B850 ring in approximately 0.7 ps, followed by rapid B850-to-B850 energy transfer on an approximately 100-fs timescale and light emission at 850-875 nm (refs. 16-19). Using a heralded single-photon source20,21 along with coincidence counting, we establish time correlation functions for B800 excitation and B850 fluorescence emission and demonstrate that both events involve single photons. We also find that the probability distribution of the number of heralds per detected fluorescence photon supports the view that a single photon can upon absorption drive the subsequent energy transfer and fluorescence emission and hence, by extension, the primary charge separation of photosynthesis. An analytical stochastic model and a Monte Carlo numerical model capture the data, further confirming that absorption of single photons is correlated with emission of single photons in a natural light-harvesting complex.


Asunto(s)
Complejos de Proteína Captadores de Luz , Fotones , Fotosíntesis , Rhodobacter sphaeroides , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Bacterioclorofilas/química , Bacterioclorofilas/metabolismo , Transferencia de Energía , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/metabolismo , Fluorescencia , Procesos Estocásticos , Método de Montecarlo
11.
Annu Rev Phys Chem ; 74: 493-520, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36791782

RESUMEN

Photosynthetic light harvesting exhibits near-unity quantum efficiency. The high efficiency is achieved through a series of energy and charge transfer steps within a network of pigment-containing proteins. Remarkably, high efficiency is conserved across many organisms despite differences in the protein structures and organization that allow each organism to respond to its own biological niche and the stressors within. In this review, we highlight recent progress toward understanding how organisms maintain optimal light-harvesting ability by acclimating to their environment. First, we review the building blocks of photosynthetic light harvesting, energy transfer, and time-resolved spectroscopic techniques. Then, we explore how three classes of photosynthetic organisms-purple bacteria, cyanobacteria, and green plants-optimize their light-harvesting apparatuses to their particular environment. Overall, research has shown that photosynthetic energy transfer is robust to changing environmental conditions, with each organism utilizing its own strategies to optimize photon capture in its particular biological niche.


Asunto(s)
Complejos de Proteína Captadores de Luz , Fotosíntesis , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Análisis Espectral , Aclimatación , Luz
12.
Chem Sci ; 13(44): 13020-13031, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36425503

RESUMEN

Strongly-coupled multichromophoric assemblies orchestrate the absorption, transport, and conversion of photonic energy in natural and synthetic systems. Programming these functionalities involves the production of materials in which chromophore placement is precisely controlled. DNA nanomaterials have emerged as a programmable scaffold that introduces the control necessary to select desired excitonic properties. While the ability to control photophysical processes, such as energy transport, has been established, similar control over photochemical processes, such as interchromophore charge transfer, has not been demonstrated in DNA. In particular, charge transfer requires the presence of close-range interchromophoric interactions, which have a particularly steep distance dependence, but are required for eventual energy conversion. Here, we report a DNA-chromophore platform in which long-range excitonic couplings and short-range charge-transfer couplings can be tailored. Using combinatorial screening, we discovered chromophore geometries that enhance or suppress photochemistry. We combined spectroscopic and computational results to establish the presence of symmetry-breaking charge transfer in DNA-scaffolded squaraines, which had not been previously achieved in these chromophores. Our results demonstrate that the geometric control introduced through the DNA can access otherwise inaccessible processes and program the evolution of excitonic states of molecular chromophores, opening up opportunities for designer photoactive materials for light harvesting and computation.

13.
J Am Chem Soc ; 144(38): 17516-17521, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36102697

RESUMEN

Non-natural light-driven enzymatic reactivity was recently developed to perform the highly stereoselective reactions required for pharmaceutical synthesis. However, photoenzymes require high-intensity light to function because of the poor absorption properties of their photoactive intermediates. Inspired by the modular architecture of photosynthesis, we designed a conjugate composed of a covalently linked photoenzyme and a light antenna to separate light capture from catalysis. Spectroscopic characterization of the conjugate showed the presence of efficient energy transfer from the light-harvesting components to the photoenzyme. In the presence of energy transfer, a ∼4-fold increase in product yield was observed for intramolecular hydroalkylation of alkenes, and reactivity was enabled for intermolecular hydroalkylation of alkenes. These improvements establish the power of incorporating nature's design into non-natural photoenzymatic catalysis.


Asunto(s)
Gluconobacter , Oxidorreductasas , Alquenos , Catálisis , Luz , Fotosíntesis
14.
Nat Commun ; 13(1): 4935, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35999227

RESUMEN

Control over the copy number and nanoscale positioning of quantum dots (QDs) is critical to their application to functional nanomaterials design. However, the multiple non-specific binding sites intrinsic to the surface of QDs have prevented their fabrication into multi-QD assemblies with programmed spatial positions. To overcome this challenge, we developed a general synthetic framework to selectively attach spatially addressable QDs on 3D wireframe DNA origami scaffolds using interfacial control of the QD surface. Using optical spectroscopy and molecular dynamics simulation, we investigated the fabrication of monovalent QDs of different sizes using chimeric single-stranded DNA to control QD surface chemistry. By understanding the relationship between chimeric single-stranded DNA length and QD size, we integrated single QDs into wireframe DNA origami objects and visualized the resulting QD-DNA assemblies using electron microscopy. Using these advances, we demonstrated the ability to program arbitrary 3D spatial relationships between QDs and dyes on DNA origami objects by fabricating energy-transfer circuits and colloidal molecules. Our design and fabrication approach enables the geometric control and spatial addressing of QDs together with the integration of other materials including dyes to fabricate hybrid materials for functional nanoscale photonic devices.


Asunto(s)
Nanoestructuras , Puntos Cuánticos , Colorantes , ADN/química , ADN de Cadena Simple , Nanoestructuras/química , Puntos Cuánticos/química
15.
Nat Commun ; 13(1): 3709, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35794108

RESUMEN

Single pass cell surface receptors regulate cellular processes by transmitting ligand-encoded signals across the plasma membrane via changes to their extracellular and intracellular conformations. This transmembrane signaling is generally initiated by ligand binding to the receptors in their monomeric form. While subsequent receptor-receptor interactions are established as key aspects of transmembrane signaling, the contribution of monomeric receptors has been challenging to isolate due to the complexity and ligand-dependence of these interactions. By combining membrane nanodiscs produced with cell-free expression, single-molecule Förster Resonance Energy Transfer measurements, and molecular dynamics simulations, we report that ligand binding induces intracellular conformational changes within monomeric, full-length epidermal growth factor receptor (EGFR). Our observations establish the existence of extracellular/intracellular conformational coupling within a single receptor molecule. We implicate a series of electrostatic interactions in the conformational coupling and find the coupling is inhibited by targeted therapeutics and mutations that also inhibit phosphorylation in cells. Collectively, these results introduce a facile mechanism to link the extracellular and intracellular regions through the single transmembrane helix of monomeric EGFR, and raise the possibility that intramolecular transmembrane conformational changes upon ligand binding are common to single-pass membrane proteins.


Asunto(s)
Receptores ErbB , Membrana Celular/metabolismo , Receptores ErbB/metabolismo , Ligandos , Unión Proteica , Conformación Proteica
16.
J Chem Phys ; 157(3): 035102, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35868944

RESUMEN

Photosynthetic organisms use pigment-protein complexes to capture the sunlight that powers most life on earth. Within these complexes, the position of the embedded pigments is all optimized for light harvesting. At the same time, the protein scaffold undergoes thermal fluctuations that vary the structure, and, thus, photophysics, of the complexes. While these variations are averaged out in ensemble measurements, single-molecule spectroscopy provides the ability to probe these conformational changes. We used single-molecule fluorescence spectroscopy to identify the photophysical substates reflective of distinct conformations and the associated conformational dynamics in phycoerythrin 545 (PE545), a pigment-protein complex from cryptophyte algae. Rapid switching between photophysical states was observed, indicating that ensemble measurements average over a conformational equilibrium. A highly quenched conformation was also identified, and its population increased under high light. This discovery establishes that PE545 has the characteristics to serve as a photoprotective site. Finally, unlike homologous proteins from the evolutionarily related cyanobacteria and red algae, quenching was not observed upon photobleaching, which may allow for robust photophysics without the need for rapid repair or replacement machinery. Collectively, these observations establish the presence of a rich and robust set of conformational states of PE545. Cryptophytes exhibit particularly diverse energetics owing to the variety of microenvironments in which they survive, and the conformational states and dynamics reported here may provide photophysical flexibility that contributes to their remarkable ability to flourish under diverse conditions.


Asunto(s)
Criptófitas , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral , Criptófitas/química , Fluorescencia , Complejos de Proteína Captadores de Luz/química , Conformación Molecular , Fotosíntesis , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo
17.
Acc Chem Res ; 55(10): 1423-1434, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35471814

RESUMEN

For more than a decade, photoredox catalysis has been demonstrating that when photoactive catalysts are irradiated with visible light, reactions occur under milder, cheaper, and environmentally friendlier conditions. Furthermore, this methodology allows for the activation of abundant chemicals into valuable products through novel mechanisms that are otherwise inaccessible. The photoredox approach, however, has been primarily used for pharmaceutical applications, where its implementation has been highly effective, but typically with a more rudimentary understanding of the mechanisms involved in these transformations. From a global perspective, the manufacture of everyday chemicals by the chemical industry as a whole currently accounts for 10% of total global energy consumption and generates 7% of the world's greenhouse gases annually. In this context, the Bio-Inspired Light-Escalated Chemistry (BioLEC) Energy Frontier Research Center (EFRC) was founded to supercharge the photoredox approach for applications in chemical manufacturing aimed at reducing its energy consumption and emissions burden, by using bioinspired schemes to harvest multiple electrons to drive endothermically uphill chemical reactions. The Center comprises a diverse group of researchers with expertise that includes synthetic chemistry, biophysics, physical chemistry, and engineering. The team works together to gain a deeper understanding of the mechanistic details of photoredox reactions while amplifying the applications of these light-driven methodologies.In this Account, we review some of the major advances in understanding, approach, and applicability made possible by this collaborative Center. Combining sophisticated spectroscopic tools and photophysics tactics with enhanced photoredox reactions has led to the development of novel techniques and reactivities that greatly expand the field and its capabilities. The Account is intended to highlight how the interplay between disciplines can have a major impact and facilitate the advance of the field. For example, techniques such as time-resolved dielectric loss (TRDL) and pulse radiolysis are providing mechanistic insights not previously available. Hypothesis-driven photocatalyst design thus led to broadening of the scope of several existing transformations. Moreover, bioconjugation approaches and the implementation of triplet-triplet annihilation mechanisms created new avenues for the exploration of reactivities. Lastly, our multidisciplinary approach to tackling real-world problems has inspired the development of efficient methods for the depolymerization of lignin and artificial polymers.


Asunto(s)
Electrones , Luz , Catálisis , Oxidación-Reducción
18.
Biochim Biophys Acta Bioenerg ; 1863(4): 148543, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35202576

RESUMEN

Under high light conditions, excess energy can damage the machinery of oxygenic photosynthesis. Plants have evolved a series of photoprotective processes, including conformational changes of the light-harvesting complexes that activate dissipation of energy as heat. In this mini-review, we will summarize our recent work developing and applying single-molecule methods to investigate the conformational states of the light-harvesting complexes. Through these measurements, we identified dissipative conformations and how they depend on conditions that mimic high light. Our studies revealed an equilibrium between the light-harvesting and dissipative conformations, and that the nature of the equilibrium varies with cellular environment, between proteins, and between species. Finally, we conclude with an outlook on open questions and implications for photosynthetic yields.


Asunto(s)
Complejos de Proteína Captadores de Luz , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral , Complejos de Proteína Captadores de Luz/metabolismo , Fotosíntesis/fisiología , Conformación Proteica , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo
19.
J Phys Chem Lett ; 13(7): 1863-1871, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35175058

RESUMEN

Molecular materials for light harvesting, computing, and fluorescence imaging require nanoscale integration of electronically active subunits. Variation in the optical absorption and emission properties of the subunits has primarily been achieved through modifications to the chemical structure, which is often synthetically challenging. Here, we introduce a facile method for varying optical absorption and emission properties by changing the geometry of a strongly coupled Cy3 dimer on a double-crossover (DX) DNA tile. Leveraging the versatility and programmability of DNA, we tune the length of the complementary strand so that it "pushes" or "pulls" the dimer, inducing dramatic changes in the photophysics including lifetime differences observable at the ensemble and single-molecule level. The separable lifetimes, along with environmental sensitivity also observed in the photophysics, suggest that the Cy3-DX tile constructs could serve as fluorescence probes for multiplexed imaging. More generally, these constructs establish a framework for easily controllable photophysics via geometric changes to coupled chromophores, which could be applied in light-harvesting devices and molecular electronics.


Asunto(s)
Carbocianinas/química , ADN/química , Carbocianinas/metabolismo , Dicroismo Circular , ADN/metabolismo , Dimerización , Colorantes Fluorescentes , Conformación de Ácido Nucleico
20.
Nat Chem ; 14(2): 153-159, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34992285

RESUMEN

Photosynthetic organisms convert sunlight to electricity with near unity quantum efficiency. Absorbed photoenergy transfers through a network of chromophores positioned within protein scaffolds, which fluctuate due to thermal motion. The resultant variation in the individual energy transfer steps has not yet been measured, and so how the efficiency is robust to this variation has not been determined. Here, we describe single-molecule pump-probe spectroscopy with facile spectral tuning and its application to the ultrafast dynamics of single allophycocyanin, a light-harvesting protein from cyanobacteria. We disentangled the energy transfer and energetic relaxation from nuclear motion using the spectral dependence of the dynamics. We observed an asymmetric distribution of timescales for energy transfer and a slower and more heterogeneous distribution of timescales for energetic relaxation, which was due to the impact of the protein environment. Collectively, these results suggest that energy transfer is robust to protein fluctuations, a prerequisite for efficient light harvesting.


Asunto(s)
Sondas Moleculares/química , Fotosíntesis , Ficocianina/química , Análisis Espectral/métodos , Transferencia de Energía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...