Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 124(6): 063601, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32109106

RESUMEN

We report on the realization of long-range Ising interactions in a cold gas of cesium atoms by Rydberg dressing. The interactions are enhanced by coupling to Rydberg states in the vicinity of a Förster resonance. We characterize the interactions by measuring the mean-field shift of the clock transition via Ramsey spectroscopy, observing one-axis twisting dynamics. We furthermore emulate a transverse-field Ising model by periodic application of a microwave field and detect dynamical signatures of the paramagnetic-ferromagnetic phase transition. Our results highlight the power of optical addressing for achieving local and dynamical control of interactions, enabling prospects ranging from investigating Floquet quantum criticality to producing tunable-range spin squeezing.

2.
Phys Rev Lett ; 119(12): 123601, 2017 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-29341658

RESUMEN

We propose and analyze two distinct routes toward realizing interacting symmetry-protected topological (SPT) phases via periodic driving. First, we demonstrate that a driven transverse-field Ising model can be used to engineer complex interactions which enable the emulation of an equilibrium SPT phase. This phase remains stable only within a parametric time scale controlled by the driving frequency, beyond which its topological features break down. To overcome this issue, we consider an alternate route based upon realizing an intrinsically Floquet SPT phase that does not have any equilibrium analog. In both cases, we show that disorder, leading to many-body localization, prevents runaway heating and enables the observation of coherent quantum dynamics at high energy densities. Furthermore, we clarify the distinction between the equilibrium and Floquet SPT phases by identifying a unique micromotion-based entanglement spectrum signature of the latter. Finally, we propose a unifying implementation in a one-dimensional chain of Rydberg-dressed atoms and show that protected edge modes are observable on realistic experimental time scales.

3.
Science ; 347(6219): 288-92, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25525160

RESUMEN

The geometric structure of a single-particle energy band in a solid is fundamental for a wide range of many-body phenomena and is uniquely characterized by the distribution of Berry curvature over the Brillouin zone. We realize an atomic interferometer to measure Berry flux in momentum space, in analogy to an Aharonov-Bohm interferometer that measures magnetic flux in real space. We demonstrate the interferometer for a graphene-type hexagonal optical lattice loaded with bosonic atoms. By detecting the singular π Berry flux localized at each Dirac point, we establish the high momentum resolution of this interferometric technique. Our work forms the basis for a general framework to fully characterize topological band structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...