Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Biochem ; 295(1): 107-12, 2001 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-11476551

RESUMEN

We report development of a method for the direct measurement of the interaction between the N-terminal arm and the remainder of the dimerization domain in the Escherichia coli AraC protein, the regulator of the l-arabinose operon. The interaction was measured using surface plasmon resonance to monitor the association between the immobilized peptide arm and the dimerization domain, truncated of its arm, in solution. As expected from genetic and physiological data, the interaction is strongly stimulated by l-arabinose and is insensitive to sugars like d-glucose or d-galactose. Alterations in the sequence of the arm which physiological experiments predict either to strengthen or weaken the arm produce the expected responses.


Asunto(s)
Proteínas Bacterianas , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Resonancia por Plasmón de Superficie/métodos , Factores de Transcripción , Secuencia de Aminoácidos , Factor de Transcripción de AraC , Arabinosa/metabolismo , Fenómenos Biofísicos , Biofisica , Dimerización , Escherichia coli , Proteínas de Escherichia coli , Galactosa/metabolismo , Glucosa/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
2.
J Mol Biol ; 307(4): 1001-9, 2001 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-11286551

RESUMEN

AraC protein, the regulator of the l-arabinose operon in Escherichia coli has been postulated to function by a light switch mechanism. According to this mechanism, it should be possible to find mutations in the DNA-binding domain of AraC that result in weaker arm-DNA-binding domain interactions and which make the protein constitutive, that is, it no longer requires arabinose to activate transcription. We isolated such mutations by randomizing three contiguous leucine residues in the DNA-binding domain, and then by systematically scanning surface residues of the DNA-binding domain with alanine and glutamic acid. As a result, a total of 20 constitutive mutations were found at ten different positions. They form a contiguous trail on the DNA-distal face of the DNA-binding domain, and likely define the region where the N-terminal arm that extends from the N-terminal dimerization domain contacts the C-terminal DNA-binding domain.


Asunto(s)
Proteínas Bacterianas , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Escherichia coli , Mutación/genética , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Factores de Transcripción , Alanina/genética , Alanina/metabolismo , Isomerasas Aldosa-Cetosa/metabolismo , Sustitución de Aminoácidos/genética , Factor de Transcripción de AraC , Arabinosa/farmacología , Secuencia de Bases , Sitios de Unión , ADN/química , ADN/genética , Proteínas de Unión al ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli , Fucosa/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Genes Bacterianos/genética , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Cinética , Modelos Moleculares , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas/genética , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Represoras/genética
3.
J Biol Chem ; 276(23): 20017-21, 2001 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-11274194

RESUMEN

The AraC DNA binding domain is inactive in a monomeric form but can activate transcription from the arabinose operon promoters upon its dimerization. We used this property to identify plasmids encoding peptide additions to the AraC DNA binding domain that could dimerize the domain. We generated a high diversity library of plasmids by inserting 90-base oligonucleotides of random sequence ahead of DNA coding for the AraC DNA binding domain in an expression vector, transforming, and selecting colonies containing functional oligomeric peptide-AraC DNA binding domain chimeric proteins by their growth on minimal arabinose medium. Six of seven Ara(+) candidates were partially characterized, and one was purified. Equilibrium analytical centrifugation experiments showed that it dimerizes with a dissociation constant of approximately 2 micrometer.


Asunto(s)
Proteínas Bacterianas , Proteínas de Unión al ADN/química , Péptidos/química , Proteínas Represoras/química , Factores de Transcripción , Secuencia de Aminoácidos , Factor de Transcripción de AraC , Dimerización , Datos de Secuencia Molecular , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación
4.
Proc Natl Acad Sci U S A ; 98(2): 427-31, 2001 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-11209047

RESUMEN

We applied two experiments useful in the study of ligand-regulated DNA binding proteins to AraC, the dimeric regulator of the Escherichia coli l-arabinose operon. In the absence of arabinose, AraC prefers to loop DNA by binding to two half-sites that are separated by 210 base pairs, and in the presence of arabinose it prefers to bind to adjacently located half-sites. The basis for this ligand-regulated shift in binding appears to result from a shift in the rigidity of the system, where rigidity both in AraC protein in the absence of arabinose, and in the DNA are required to generate the free energy differences that produce the binding preferences. Eliminating the dimerization domains and connecting the two DNA binding domains of AraC by a flexible peptide linker should provide a protein whose behavior mimics that of AraC when there is no interaction between its dimerization and DNA binding domains. The resulting protein bound to adjacent half-sites on the DNA, like AraC protein in the presence of arabinose. When the two double-stranded DNA half-sites were connected by 24 bases of single-stranded, flexible DNA, wild-type AraC protein bound to the DNA in the presence and absence of arabinose with equal affinity, showing that AraC modulates its DNA binding affinity in response to arabinose by shifting the relative positions of its DNA binding domains. These results are consistent with the light switch mechanism for the action of AraC, refine the model, and extend the range of experimental tests to which it has been subjected.


Asunto(s)
Arabinosa/metabolismo , Proteínas Bacterianas/metabolismo , ADN Bacteriano/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , ADN/efectos de los fármacos , Conformación de Ácido Nucleico/efectos de los fármacos , Proteínas Represoras/metabolismo , Factores de Transcripción , Secuencia de Aminoácidos , Factor de Transcripción de AraC , Arabinosa/farmacología , Sitios de Unión , ADN/ultraestructura , ADN Bacteriano/ultraestructura , Dimerización , Proteínas de Escherichia coli , Productos del Gen rev/química , VIH-2/genética , Datos de Secuencia Molecular , Operón , Reacción en Cadena de la Polimerasa , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Productos del Gen rev del Virus de la Inmunodeficiencia Humana
5.
J Biol Chem ; 276(4): 2562-4, 2001 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-11069917

RESUMEN

Constitutive mutations were sought and found in the N-terminal arm of the Escherichia coli regulatory protein of the arabinose operon, AraC protein. A new mutation, N16D, was of particular interest. Asn-16 is not seen in the crystal structure of the AraC dimerization domain determined in the absence of arabinose, because the N-terminal arm 18 residues are disordered, but in the presence of arabinose, residues 7-18 fold over the arabinose and make many interactions with it. In this state Asn-16 lies near two positively charged amino acids, Lys-43 and Arg-99. We propose that the introduction of the negatively charged aspartic residue at position 16 creates a charge-charge interaction network among Asp-16, Lys-43, and Arg-99 that holds the arm to the dimerization domain even in the absence of arabinose. This frees the DNA-binding domains and allows them to bind cis to I(1)-I(2) half-sites and activate transcription. Mutating the two positively charged residues to alanines individually and collectively decreased or eliminated the constitutivity created by the N16D mutation.


Asunto(s)
Arabinosa/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Represoras/metabolismo , Factores de Transcripción , Factor de Transcripción de AraC , Arginina , Ácido Aspártico , Proteínas Bacterianas/genética , Dimerización , Proteínas de Escherichia coli , Lisina , Modelos Genéticos , Mutación , Proteínas Represoras/genética
6.
J Biol Chem ; 276(7): 4886-8, 2001 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-11104764

RESUMEN

Genes were synthesized to express two DNA binding domains of AraC connected by short linkers. The abilities of the resulting proteins to bind to DNA containing AraC half-sites separated by the usual four bases as well as an additional two or three helical turns of the DNA were measured. The inability of some of the protein constructs to bind to widely separated half-sites indicates that the C-terminal 14 amino acids of AraC are firmly bound to the rest of the DNA binding domain.


Asunto(s)
Proteínas de Escherichia coli , Proteínas Represoras/química , Factores de Transcripción , Secuencia de Aminoácidos , Factor de Transcripción de AraC , Proteínas Bacterianas , ADN/metabolismo , Proteínas de Unión al ADN , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteínas Represoras/metabolismo , Homología de Secuencia de Aminoácido , Moldes Genéticos
7.
Proteins ; 42(2): 177-81, 2001 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-11119641

RESUMEN

We examined the effects of the metabolic stability of random sequences appended to the C-terminus of the dimerization domain of the regulatory protein of the Escherichia coli arabinose operon, AraC. Genetic scoring utilized the trans dominant negative effect of the dimerization domain on the activity of intact AraC, and physical scoring used sodium dodecyl sulfate (SDS) gel electrophoresis. We confirmed previous results obtained with Arc and lambda repressors that C-terminal charged residues tend to be stabilizing and that hydrophobic residues are destabilizing. Additionally, we found that the provision of a single, charged C-terminal residue conferred significant stability that was independent of interior sequence. Hence, it appears that in the engineering of proteins, flexible tails may be freely added, with only the identity of the C-terminal amino acid being restricted. Proteins 2001;42:177-181.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Represoras/química , Factores de Transcripción , Secuencia de Aminoácidos , Factor de Transcripción de AraC , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Dimerización , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Proteínas de Escherichia coli , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Conformación Proteica , Proteínas Represoras/genética , Proteínas Represoras/aislamiento & purificación , Homología de Secuencia de Aminoácido , Solubilidad
8.
Trends Genet ; 16(12): 559-65, 2000 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11102706

RESUMEN

Over forty years of research on the L-arabinose operon of Escherichia coli have provided insights into the mechanism of positive regulation of gene activity. This research also discovered DNA looping and the mechanism by which the regulatory protein changes its DNA-binding properties in response to the presence of arabinose. As is frequently seen in focused research on biological subjects, the initial studies were primarily genetic. Subsequently, the genetic approaches were augmented by physiological and then biochemical studies. Now biophysical studies are being conducted at the atomic level, but genetics still has a crucial role in the study of this system.


Asunto(s)
Arabinosa/genética , Escherichia coli/genética , Operón
9.
J Bacteriol ; 182(18): 5076-81, 2000 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-10960090

RESUMEN

The Escherichia coli promoter p(BAD), under the control of the AraC protein, drives the expression of mRNA encoding the AraB, AraA, and AraD gene products of the arabinose operon. The binding site of AraC at p(BAD) overlaps the RNA polymerase -35 recognition region by 4 bases, leaving 2 bases of the region not contacted by AraC. This overlap raises the question of whether AraC substitutes for the sigma subunit of RNA polymerase in recognition of the -35 region or whether both AraC and sigma make important contacts with the DNA in the -35 region. If sigma does not contact DNA near the -35 region, p(BAD) activity should be independent of the identity of the bases in the hexamer region that are not contacted by AraC. We have examined this issue in the p(BAD) promoter and in a second promoter where the AraC binding site overlaps the -35 region by only 2 bases. In both cases promoter activity is sensitive to changes in bases not contacted by AraC, showing that despite the overlap, sigma does read DNA in the -35 region. Since sigma and AraC are thus closely positioned at p(BAD), it is possible that AraC and sigma contact one another during transcription initiation. DNA migration retardation assays, however, showed that there exists only a slight degree of DNA binding cooperativity between AraC and sigma, thus suggesting either that the normal interactions between AraC and sigma are weak or that the presence of the entire RNA polymerase is necessary for significant interaction.


Asunto(s)
Proteínas Bacterianas , Escherichia coli/genética , Proteínas Represoras/metabolismo , Factor sigma/metabolismo , Factores de Transcripción , Factor de Transcripción de AraC , Secuencia de Bases , Sitios de Unión , Secuencia de Consenso , ADN Bacteriano/química , ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli , Variación Genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Plásmidos , Regiones Promotoras Genéticas , Moldes Genéticos
10.
J Bacteriol ; 182(7): 1995-2000, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10715008

RESUMEN

Full activation of transcription of the araFGH promoter, p(FGH), requires both the catabolite activator protein (CAP) and AraC protein. At p(FGH), the binding site for CAP is centered at position -41.5, an essential binding site for AraC is centered at position -79.5, and a second, nonessential binding site is centered at position -154.5. In this work, we used the minimal promoter region required for in vivo activation of p(FGH) to examine the roles of CAP and AraC in stimulating formation of open complexes at p(FGH). Migration retardation assays of open complexes showed that RNA polymerase binds exceptionally tightly to the AraC-CAP-p(FGH) complex and that the order of addition of proteins to the initiating complex is important. Similar assays with RNA polymerase containing truncated alpha subunits suggest that AraC interacts with the C-terminal domain of the alpha subunit. Finally, AraC protein also acts to prevent the improper binding of RNA polymerase at a pseudo promoter near the true p(FGH) promoter.


Asunto(s)
Sitio Alostérico , Proteínas Bacterianas , Proteína Receptora de AMP Cíclico/metabolismo , Escherichia coli/genética , Genes Bacterianos/genética , Regiones Promotoras Genéticas/genética , Proteínas Represoras/metabolismo , Factores de Transcripción , Regulación Alostérica/genética , Factor de Transcripción de AraC , Secuencia de Bases , Unión Competitiva , Proteína Receptora de AMP Cíclico/genética , ADN/genética , ADN/metabolismo , Huella de ADN , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli , Regulación Bacteriana de la Expresión Génica/genética , Cinética , Datos de Secuencia Molecular , Unión Proteica , Proteínas Represoras/genética , Eliminación de Secuencia/genética , Activación Transcripcional/genética
11.
J Mol Biol ; 294(2): 417-25, 1999 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-10610768

RESUMEN

We have isolated mutations in AraC protein that specifically block either induction or repression at the ara pBAD promoter. These hemiplegic mutations identify amino acid residues that, correspondingly, are involved only in the induction or only in the repression activities of the protein. Residues key only for induction are 13, 15, and 18, which are located in the N-terminal arm of AraC, and residues 80 and 82 which lie in the arabinose-binding pocket of the protein's sugar-binding and dimerization domain. Alteration of residues 157, 244 and 257 can leave the protein able to activate transcription but not able to repress transcription. The behavior of the mutant proteins is consistent with the light switch mechanism for AraC action in which the presence of arabinose pulls the N-terminal arms of the protein off the DNA-binding domains, thereby freeing them to assume a direct-repeat orientation, bind to adjacent direct-repeat DNA half-sites, and activate transcription.


Asunto(s)
Proteínas Bacterianas , Mutación , Proteínas Represoras/genética , Factores de Transcripción , Factor de Transcripción de AraC , Arabinosa/metabolismo , Secuencia de Bases , Sitios de Unión , Dimerización , Escherichia coli/genética , Proteínas de Escherichia coli , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Transcripción Genética
13.
J Mol Biol ; 282(4): 751-9, 1998 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-9743624

RESUMEN

Using genetic engineering techniques we generated randomly located internal tandem duplications of random size within Staphylococcal nuclease. Those insertions, possessing greater than 0.1% of normal activity, were sequenced and characterized physically. Insertions were found to begin and end in regions possessing secondary structure as well as in regions without secondary structure. All proteins remained folded and monomeric, although one mutant appeared, by both circular dichroism and size exclusion chromatography, to be partially unfolded. The stability of the insertions as assayed by guanidine hydrochloride denaturation ranged from nearly normal to destabilized by almost 4 kcal per mol. The activities of the insertion mutants ranged from 1/30 to 1/2000 of the parental nuclease.


Asunto(s)
Nucleasa Microcócica/metabolismo , Mutagénesis Insercional , Staphylococcus/enzimología , Secuencias Repetidas en Tándem/genética , Cromatografía en Gel , Dicroismo Circular , Estabilidad de Enzimas , Ingeniería Genética , Guanidina , Cinética , Nucleasa Microcócica/química , Nucleasa Microcócica/genética , Nucleasa Microcócica/aislamiento & purificación , Modelos Moleculares , Mutación , Desnaturalización Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de ADN , Staphylococcus/genética , Termodinámica , Transformación Bacteriana
14.
J Bacteriol ; 180(16): 4227-32, 1998 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-9696773

RESUMEN

We sought a mutation in the DNA binding domain of the arabinose operon regulatory protein, AraC, of Escherichia coli that allows the protein to bind DNA normally but not activate transcription. The mutation was isolated by mutagenizing a plasmid overproducing a chimeric leucine zipper-AraC DNA binding domain and screening for proteins that were trans dominant negative with regard to wild-type AraC protein. The mutant with the lowest transcription activation of the araBAD promoter was studied further. It proved to alter a residue that had previously been demonstrated to contact DNA. Because the overproduced mutant protein still bound DNA in vivo, it is deficient in transcription activation for some reason other than absence of DNA binding. Using the phase-sensitive DNA bending assay, we found that wild-type AraC bends DNA about 90 degrees whereas the mutant bends DNA by a smaller amount.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Escherichia coli/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción , Factor de Transcripción de AraC , ADN Bacteriano/química , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Proteínas de Escherichia coli , Leucina Zippers , Mutación , Conformación de Ácido Nucleico , Unión Proteica
15.
J Mol Biol ; 278(3): 529-38, 1998 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-9600836

RESUMEN

In the absence of arabinose and interactions with other proteins, AraC, the activator-repressor that regulates the araBAD operon in Escherichia coli, was found to prefer participating in DNA looping interactions between the two well-separated DNA half-sites, araI1 and araO2 at their normal separation of 211 base-pairs rather than binding to these same two half-sites when they are adjacent to one another. On the addition of arabinose, AraC preferred to bind to the adjacently located half-sites. Inverting the distally located araO2 half-site eliminated the looping preference. These results demonstrate that apo-AraC possesses an intrinsic looping preference that is eliminated by the presence of arabinose. We developed a method for the accurate determination of the relative affinities of AraC for the DNA half-sites araI1, araI2, and araO2 and non-specific DNA. These affinities allowed accurate calculation of basal level and induced levels of expression from pBAD under a wide variety of natural and mutant conditions. The calculations independently predicted the looping preference of apo-AraC.


Asunto(s)
Apoproteínas/metabolismo , Proteínas Bacterianas , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Operón , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas Represoras/metabolismo , Factores de Transcripción , beta-Galactosidasa/biosíntesis , Apoproteínas/biosíntesis , Factor de Transcripción de AraC , Arabinosa/genética , Secuencia de Bases , ADN Bacteriano/química , ADN Bacteriano/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Cinética , Matemática , Modelos Genéticos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Oligodesoxirribonucleótidos , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Represoras/biosíntesis
16.
J Mol Biol ; 278(3): 539-48, 1998 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-9600837

RESUMEN

N-terminal deletions extending beyond the sixth amino acid of the Escherichia coli regulator of the l-arabinose operon, AraC, were found to generate constitutive regulatory behavior of the promoter pBAD. Mutagenesis of the DNA coding for the first 20 amino acids of the protein and screening for constitutives yielded mutants across the region whereas screening for mutants that cannot induce pBAD, even in the presence of arabinose, yielded none. These results indicate that the N-terminal arm is not essential for transcription activation, but that it plays an important and active role in holding the system in a non-activating state. Despite the fact that arabinose binds to the N-terminal domain of AraC, mutations were found in the C-terminal domain that weaken the binding of arabinose to the protein. The effects of the mutations could be suppressed by specific mutation in the N-terminal arm or by deletion of the arm. These results, in conjunction with the crystal structures of the N-terminal domain determined in the presence and absence of arabinose, indicate that in the absence of arabinose, the N-terminal arms of the protein bind to the C-terminal DNA binding domains to hold them in a state where the protein prefers to loop. When arabinose is added, the arms are pulled off the C-terminal domains, thereby releasing them to bind to adjacently located DNA half-sites and activate transcription.


Asunto(s)
Proteínas Bacterianas , Escherichia coli/genética , Escherichia coli/metabolismo , Operón , Proteínas Represoras/metabolismo , Factores de Transcripción , Factor de Transcripción de AraC , Arabinosa/genética , Secuencia de Bases , Cartilla de ADN , ADN Bacteriano/química , ADN Bacteriano/metabolismo , Proteínas de Escherichia coli , Modelos Genéticos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Mutación Puntual , Reacción en Cadena de la Polimerasa/métodos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Represoras/biosíntesis , Proteínas Represoras/química , Eliminación de Secuencia
17.
J Bacteriol ; 180(2): 195-200, 1998 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-9440505

RESUMEN

We have studied catabolite gene activator protein (CAP) activation at the araBAD promoter, pBAD, in the absence of DNA looping. We ruled out the two most plausible indirect activation mechanisms: CAP-induced folding of upstream DNA back upon RNA polymerase, and CAP-induced stabilization of AraC binding to DNA. Therefore, a direct CAP-RNA polymerase interaction seemed likely. We sought and found CAP mutants defective in transcription activation at pBAD that retained normal DNA binding affinity. Some mutations altered residues in the interval from positions 150 to 164 that includes CAP activating region 1 (AR1), which has been shown to contact RNA polymerase at a number of promoters. Unexpectedly, additional mutations were found that altered residues in the region between positions 46 and 68 and at position 133. This includes the region known as activating region 3 (AR3). Mutations from both groups also affect the araFGH and rhaBAD promoters.


Asunto(s)
Proteína Receptora de AMP Cíclico/genética , Regiones Promotoras Genéticas , ADN Bacteriano , Mutagénesis
18.
Microbiol Mol Biol Rev ; 61(4): 393-410, 1997 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9409145

RESUMEN

The ArC/XylS family of prokaryotic positive transcriptional regulators includes more than 100 proteins and polypeptides derived from open reading frames translated from DNA sequences. Members of this family are widely distributed and have been found in the gamma subgroup of the proteobacteria, low- and high-G + C-content gram-positive bacteria, and cyanobacteria. These proteins are defined by a profile that can be accessed from PROSITE PS01124. Members of the family are about 300 amino acids long and have three main regulatory functions in common: carbon metabolism, stress response, and pathogenesis. Multiple alignments of the proteins of the family define a conserved stretch of 99 amino acids usually located at the C-terminal region of the regulator and connected to a nonconserved region via a linker. The conserved stretch contains all the elements required to bind DNA target sequences and to activate transcription from cognate promoters. Secondary analysis of the conserved region suggests that it contains two potential alpha-helix-turn-alpha-helix DNA binding motifs. The first, and better-fitting motif is supported by biochemical data, whereas existing biochemical data neither support nor refute the proposal that the second region possesses this structure. The phylogenetic relationship suggests that members of the family have recruited the nonconserved domain(s) into a series of existing domains involved in DNA recognition and transcription stimulation and that this recruited domain governs the role that the regulator carries out. For some regulators, it has been demonstrated that the nonconserved region contains the dimerization domain. For the regulators involved in carbon metabolism, the effector binding determinants are also in this region. Most regulators belonging to the AraC/XylS family recognize multiple binding sites in the regulated promoters. One of the motifs usually overlaps or is adjacent to the -35 region of the cognate promoters. Footprinting assays have suggested that these regulators protect a stretch of up to 20 bp in the target promoters, and multiple alignments of binding sites for a number of regulators have shown that the proteins recognize short motifs within the protected region.


Asunto(s)
Transactivadores/clasificación , Transactivadores/genética , Secuencia de Aminoácidos , Proteínas Bacterianas , Proteínas de Unión al ADN , Expresión Génica , Genes araC , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Transactivadores/fisiología
19.
J Mol Biol ; 273(1): 226-37, 1997 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-9367758

RESUMEN

The crystal structure of the sugar-binding and dimerization domain of the Escherichia coli gene regulatory protein, AraC, has been determined in complex with the competitive inhibitor D-fucose at pH 5.5 to a resolution of 1.6 A. An in-depth analysis shows that the structural basis for AraC carbohydrate specificity arises from the precise arrangement of hydrogen bond-forming protein side-chains around the bound sugar molecule. van der Waals interactions also contribute to the epimeric and anomeric selectivity of the protein. The methyl group of D-fucose is accommodated by small side-chain movements in the sugar-binding site that result in a slight distortion in the positioning of the amino-terminal arm. A comparison of this structure with the 1.5 A structure of AraC complexed with L-arabinose at neutral pH surprisingly revealed very small structural changes between the two complexes. Based on solution data, we suspect that the low pH used to crystallize the fucose complex affected the structure, and speculate about the nature of the changes between pH 5.5 and neutral pH and their implications for gene regulation by AraC. A comparison with the structurally unrelated E. coli periplasmic sugar-binding proteins reveals that conserved features of carbohydrate recognition are present, despite a complete lack of structural similarity between the two classes of proteins, suggesting convergent evolution of carbohydrate binding.


Asunto(s)
Escherichia coli/química , Fucosa/química , Conformación Proteica , Proteínas Represoras/química , Factores de Transcripción , Secuencia de Aminoácidos , Factor de Transcripción de AraC , Arabinosa/química , Arabinosa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Conformación de Carbohidratos , Cristalización , Cristalografía por Rayos X , Dimerización , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Fucosa/metabolismo , Regulación Bacteriana de la Expresión Génica , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Proteínas Represoras/metabolismo , Estereoisomerismo
20.
Science ; 276(5311): 421-5, 1997 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-9103202

RESUMEN

The crystal structure of the arabinose-binding and dimerization domain of the Escherchia coli gene regulatory protein AraC was determined in the presence and absence of L-arabinose. The 1.5 angstrom structure of the arabinose-bound molecule shows that the protein adopts an unusual fold, binding sugar within a beta barrel and completely burying the arabinose with the amino-terminal arm of the protein. Dimer contacts in the presence of arabinose are mediated by an antiparallel coiled-coil. In the 2.8 angstrom structure of the uncomplexed protein, the amino-terminal arm is disordered, uncovering the sugar-binding pocket and allowing it to serve as an oligomerization interface. The ligand-gated oligomerization as seen in AraC provides the basis of a plausible mechanism for modulating the protein's DNA-looping properties.


Asunto(s)
Proteínas Bacterianas , ADN/metabolismo , Conformación Proteica , Proteínas Represoras/química , Factores de Transcripción , Factor de Transcripción de AraC , Arabinosa/metabolismo , Sitios de Unión , Cristalización , Cristalografía por Rayos X , Dimerización , Enlace de Hidrógeno , Ligandos , Modelos Moleculares , Pliegue de Proteína , Estructura Secundaria de Proteína , Proteínas Represoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA