Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Lett ; 27(2): e14371, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38361471

RESUMEN

It is widely acknowledged that biodiversity change is affecting human well-being by altering the supply of Nature's Contributions to People (NCP). Nevertheless, the role of individual species in this relationship remains obscure. In this article, we present a framework that combines the cascade model from ecosystem services research with network theory from community ecology. This allows us to quantitatively link NCP demanded by people to the networks of interacting species that underpin them. We show that this "network cascade" framework can reveal the number, identity and importance of the individual species that drive NCP and of the environmental conditions that support them. This information is highly valuable in demonstrating the importance of biodiversity in supporting human well-being and can help inform the management of biodiversity in social-ecological systems.


Asunto(s)
Biodiversidad , Ecosistema , Humanos , Ecología
2.
New Phytol ; 241(3): 1100-1114, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38083904

RESUMEN

Understanding and predicting recruitment in species-rich plant communities requires identifying functional determinants of both density-independent performance and interactions. In a common-garden field experiment with 25 species of the woody plant genus Protea, we varied the initial spatial and taxonomic arrangement of seedlings and followed their survival and growth during recruitment. Neighbourhood models quantified how six key functional traits affect density-independent performance, interaction effects and responses. Trait-based neighbourhood models accurately predicted individual survival and growth from the initial spatial and functional composition of species-rich experimental communities. Functional variation among species caused substantial variation in density-independent survival and growth that was not correlated with interaction effects and responses. Interactions were spatially restricted but had important, predominantly competitive, effects on recruitment. Traits increasing the acquisition of limiting resources (water for survival and soil P for growth) mediated trade-offs between interaction effects and responses. Moreover, resprouting species had higher survival but reduced growth, likely reinforcing the survival-growth trade-off in adult plants. Resource acquisition of juvenile plants shapes Protea community dynamics with acquisitive species with strong competitive effects suffering more from competition. Together with functional determinants of density-independent performance, this makes recruitment remarkably predictable, which is critical for efficient restoration and near-term ecological forecasts of species-rich communities.


Asunto(s)
Proteaceae , Madera , Madera/fisiología , Plantas , Plantones , Fenotipo
3.
iScience ; 26(8): 107340, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37539036

RESUMEN

Attitude polarization describes an increasing attitude difference between groups and is increasingly recognized as a multidimensional phenomenon. However, a unified framework to study polarization across multiple dimensions is lacking. We introduce the attitudinal space framework (ASF) to fully quantify attitudinal diversity. We highlight two key measures-attitudinal extremization and attitudinal dispersion-to quantify across- and within-group attitudinal patterns. First, we show that affective polarization in the US electorate is weaker than previously thought based on mean differences alone: in both Democrat and Republican partisans, attitudinal dispersion increased between 1988 and 2008. Second, we examined attitudes toward wolves in Germany. Despite attitude differences between regions with and without wolves, we did not find differences in attitudinal extremization or dispersion, suggesting only weak attitude polarization. These results illustrate how the ASF is applicable to a wide range of social systems and offers an important avenue to understanding societal transformations.

4.
Proc Natl Acad Sci U S A ; 120(32): e2300514120, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37523540

RESUMEN

Herbivorous arthropods are the most diverse group of multicellular organisms on Earth. The most discussed drivers of their inordinate taxonomic and functional diversity are high niche availability associated with the diversity of host plants and dense niche packing due to host partitioning among herbivores. However, the relative contributions of these two factors to dynamics in the diversity of herbivores throughout Earth's history remain unresolved. Using fossil data on herbivore-induced leaf damage from across the Cenozoic, we infer quantitative bipartite interaction networks between plants and functional feeding types of herbivores. We fit a general model of diversity to these interaction networks and discover that host partitioning among functional groups of herbivores contributed twice as much to herbivore functional diversity as host diversity. These findings indicate that niche packing primarily shaped the dynamics in the functional diversity of herbivores during the past 66 my. Our study highlights how the fossil record can be used to test fundamental theories of biodiversity and represents a benchmark for assessing the drivers of herbivore functional diversity in modern ecosystems.


Asunto(s)
Artrópodos , Herbivoria , Animales , Ecosistema , Fósiles , Biodiversidad , Hojas de la Planta , Plantas
5.
Proc Biol Sci ; 290(2001): 20230132, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37357855

RESUMEN

Species interactions are critical for maintaining community structure and dynamics, but the effects of invasive species on multitrophic networks remain poorly understood. We leveraged an ongoing invasion scenario in Patagonia, Argentina, to explore how non-native ungulates affect multitrophic networks. Ungulates disrupt a hummingbird-mistletoe-marsupial keystone interaction, which alters community composition. We sampled pollination and seed dispersal interactions in intact and invaded sites. We constructed pollination and seed dispersal networks for each site, which we connected via shared plants. We calculated pollination-seed dispersal connectivity, identified clusters of highly connected species, and quantified species' roles in connecting species clusters. To link structural variation to stability, we quantified network tolerance to single random species removal (disturbance propagation) and sequential species removal (robustness) using a stochastic coextinction model. Ungulates reduced the connectivity between pollination and seed dispersal and produced fewer clusters with a skewed size distribution. Moreover, species shifted their structural role, fragmenting the network by reducing the 'bridges' among species clusters. These structural changes altered the dynamics of cascading effects, increasing disturbance propagation and reducing network robustness. Our results highlight invasive species' role in altering community structure and subsequent stability in multitrophic communities.


Asunto(s)
Marsupiales , Dispersión de Semillas , Animales , Especies Introducidas , Semillas , Plantas , Mamíferos , Polinización , Ecosistema
6.
Trends Ecol Evol ; 38(7): 602-604, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37045717

RESUMEN

Trait evolution is shaped by carbon economics at the organismal level. Here, we expand this idea to the ecosystem level and show how the trait diversity of ecological communities influences the carbon cycle. Systematic shifts in trait diversity will likely trigger changes in the carbon cycle.


Asunto(s)
Biodiversidad , Ecosistema , Fenotipo , Ciclo del Carbono , Carbono
7.
Oecologia ; 201(3): 761-770, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36754882

RESUMEN

On-going land-use change has profound impacts on biodiversity by filtering species that cannot survive in disturbed landscapes and potentially altering biotic interactions. In particular, how land-use change reshapes biotic interactions remains an open question. Here, we used selectivity experiments with nectar feeders in natural and converted forests to test the direct and indirect effects of land-use change on resource competition in Andean hummingbirds along an elevational gradient. Selectivity was defined as the time hummingbirds spent at high resource feeders when feeders with both low and high resource values were offered in the presence of other hummingbird species. Selectivity approximates the outcome of interspecific competition (i.e., the resource intake across competing species); in the absence of competition, birds should exhibit higher selectivity. We evaluated the indirect effect of forest conversion on selectivity, as mediated by morphological dissimilarity and flower resource abundance, using structural equation models. We found that forest conversion influenced selectivity at low and mid-elevations, but the influence of morphological dissimilarity and resource availability on selectivity varied between these elevations. At mid-elevation, selectivity was more influenced by the presence of morphologically similar competitors than by resource abundance while at low-elevation resource abundance was a more important predictor of selectivity. Our results suggest that selectivity is influenced by forest conversion, but that the drivers of these changes vary across elevation, highlighting the importance of considering context-dependent variation in the composition of resources and competitors when studying competition.


Asunto(s)
Aves , Néctar de las Plantas , Animales , Aves/fisiología , Flores , Bosques , Biodiversidad , Ecología
8.
Trends Ecol Evol ; 38(5): 424-434, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36599738

RESUMEN

Quantifying the vulnerability of ecosystems to global change requires a better understanding of how trophic ecosystem functions emerge. So far, trophic ecosystem functions have been studied from the perspective of either functional diversity or network ecology. To integrate these two perspectives, we propose the interaction functional space (IFS) a conceptual framework to simultaneously analyze the effects of traits and interactions on trophic functions. We exemplify the added value of our framework for seed dispersal and wood decomposition and show how species interactions influence the relationship between functional trait diversity and trophic functions. We propose future applications for a range of functions where the IFS can help to elucidate mechanisms underpinning trophic functions and facilitate understanding of functional changes in ecosystems amidst global change.


Asunto(s)
Biodiversidad , Ecosistema , Ecología , Fenotipo
9.
Nat Commun ; 13(1): 6943, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376314

RESUMEN

Species interactions can propagate disturbances across space via direct and indirect effects, potentially connecting species at a global scale. However, ecological and biogeographic boundaries may mitigate this spread by demarcating the limits of ecological networks. We tested whether large-scale ecological boundaries (ecoregions and biomes) and human disturbance gradients increase dissimilarity among plant-frugivore networks, while accounting for background spatial and elevational gradients and differences in network sampling. We assessed network dissimilarity patterns over a broad spatial scale, using 196 quantitative avian frugivory networks (encompassing 1496 plant and 1004 bird species) distributed across 67 ecoregions, 11 biomes, and 6 continents. We show that dissimilarities in species and interaction composition, but not network structure, are greater across ecoregion and biome boundaries and along different levels of human disturbance. Our findings indicate that biogeographic boundaries delineate the world's biodiversity of interactions and likely contribute to mitigating the propagation of disturbances at large spatial scales.


Asunto(s)
Aves , Ecosistema , Animales , Humanos , Biodiversidad , Plantas
10.
Sci Data ; 9(1): 511, 2022 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-35987763

RESUMEN

We introduce the FunAndes database, a compilation of functional trait data for the Andean flora spanning six countries. FunAndes contains data on 24 traits across 2,694 taxa, for a total of 105,466 entries. The database features plant-morphological attributes including growth form, and leaf, stem, and wood traits measured at the species or individual level, together with geographic metadata (i.e., coordinates and elevation). FunAndes follows the field names, trait descriptions and units of measurement of the TRY database. It is currently available in open access in the FIGSHARE data repository, and will be part of TRY's next release. Open access trait data from Andean plants will contribute to ecological research in the region, the most species rich terrestrial biodiversity hotspot.


Asunto(s)
Biodiversidad , Plantas , Fenotipo , Hojas de la Planta , Madera
11.
Commun Biol ; 5(1): 429, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35534538

RESUMEN

Bird-mediated seed dispersal is crucial for the regeneration and viability of ecosystems, often resulting in complex mutualistic species networks. Yet, how this mutualism drives the evolution of seed dispersing birds is still poorly understood. In the present study we combine whole genome re-sequencing analyses and morphometric data to assess the evolutionary processes that shaped the diversification of the Eurasian nutcracker (Nucifraga), a seed disperser known for its mutualism with pines (Pinus). Our results show that the divergence and phylogeographic patterns of nutcrackers resemble those of other non-mutualistic passerine birds and suggest that their early diversification was shaped by similar biogeographic and climatic processes. The limited variation in foraging traits indicates that local adaptation to pines likely played a minor role. Our study shows that close mutualistic relationships between bird and plant species might not necessarily act as a primary driver of evolution and diversification in resource-specialized birds.


Asunto(s)
Passeriformes , Pinus , Dispersión de Semillas , Animales , Ecosistema , Passeriformes/genética , Semillas/genética , Simbiosis
12.
J Anim Ecol ; 91(11): 2171-2180, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35596605

RESUMEN

Research on resource partitioning in plant-pollinator mutualistic systems is mainly concentrated at the levels of species and communities, whereas differences between males and females are typically ignored. Nevertheless, pollinators often show large sexual differences in behaviour and morphology, which may lead to sex-specific patterns of resource use with the potential to differentially affect plant reproduction and diversification. We investigated variation in behavioural and morphological traits between sexes of hummingbird species as potential mechanisms underlying sex-specific flower resource use in ecological communities. To do so, we compiled a dataset of plant-hummingbird interactions based on pollen loads for 31 hummingbird species from 13 localities across the Americas, complemented by data on territorial behaviour (territorial or non-territorial) and morphological traits (bill length, bill curvature, wing length and body mass). We assessed the extent of intersexual differences in niche breadth and niche overlap in floral resource use across hummingbird species. Then, we tested whether floral niche breadth and overlap between sexes are associated with sexual dimorphism in behavioural or morphological traits of hummingbird species while accounting for evolutionary relatedness among the species. We found striking differences in patterns of floral resource use between sex. Females had a broader floral niche breadth and were more dissimilar in the plant species visited with respect to males of the same species, resulting in a high level of resource partitioning between sexes. We found that both territoriality and morphological traits were related to sex-specific resource use by hummingbird species. Notably, niche overlap between sexes was greater for territorial than non-territorial species, and moreover, niche overlap was negatively associated with sexual dimorphism in bill curvature across hummingbird species. These results reveal the importance of behavioural and morphological traits of hummingbird species in sex-specific resource use and that resource partitioning by sex is likely to be an important mechanism to reduce intersexual competition in hummingbirds. These findings highlight the need for better understanding the putative role of intersexual variation in shaping patterns of interactions and plant reproduction in ecological communities.


La investigación sobre la partición de recursos en los sistemas mutualistas planta-polinizador se concentra principalmente en los niveles de especies y comunidades, mientras que las diferencias entre machos y hembras suelen ser ignoradas. Sin embargo, los polinizadores suelen mostrar grandes diferencias sexuales en su comportamiento y morfología, lo que puede dar lugar a patrones específicos de uso de recursos para cada sexo con el potencial de afectar de forma diferencial la reproducción y la diversificación de las plantas. Se estudió la variación en los rasgos de comportamiento y morfológicos entre sexos de las especies de colibríes como posibles mecanismos que explican el uso de recursos florales específicos para cada sexo en las comunidades ecológicas. Para ello, se recopiló un conjunto de datos de interacciones planta-colibrí con base en las cargas de polen de 31 especies de colibríes de 13 localidades en las Américas, además de datos sobre su comportamiento territorial (territorial o no territorial) y rasgos morfológicos (longitud y curvatura del pico, longitud del ala y masa corporal). Se evaluaron las diferencias intersexuales en la amplitud y el solapamiento del nicho en el uso de los recursos florales para las distintas especies de colibríes. Posteriormente, se comprobó si la amplitud del nicho floral y el solapamiento entre sexos están asociados con el dimorfismo sexual en los rasgos de comportamiento o morfológicos de las especies de colibríes, teniendo en cuenta el parentesco evolutivo entre las especies. Se encontraron diferencias notables en los patrones de uso de los recursos florales entre sexos. Las hembras presentaron una mayor amplitud de nicho floral y fueron más disímiles en las especies de plantas visitadas con respecto a los machos de la misma especie, lo que resultó en un alto nivel de partición de recursos entre los sexos. Se encontró que tanto la territorialidad como los rasgos morfológicos están relacionados con el uso de recursos específicos por sexo en las especies de colibríes. En particular, el solapamiento de nicho entre sexos fue mayor para las especies territoriales que para las no territoriales y, además, el solapamiento de nicho se asoció negativamente con el dimorfismo sexual en la curvatura del pico en las especies de colibríes. Estos resultados revelan la importancia de los rasgos conductuales y morfológicos de las especies de colibríes en el uso de recursos según el sexo y que la partición de recursos entre sexos es probablemente un mecanismo importante para reducir la competencia intersexual en los colibríes. Estos resultados ponen de manifiesto la necesidad de comprender mejor el rol que tiene la variación intersexual en los patrones de interacción y en la reproducción de las plantas en las comunidades ecológicas.


Asunto(s)
Aves , Polinización , Femenino , Masculino , Animales , Flores/anatomía & histología , Polen , Fenotipo , Plantas
13.
Ecol Lett ; 25(3): 686-696, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35199916

RESUMEN

Species interactions are influenced by the trait structure of local multi-trophic communities. However, it remains unclear whether mutualistic interactions in particular can drive trait patterns at the global scale, where climatic constraints and biogeographic processes gain importance. Here we evaluate global relationships between traits of frugivorous birds and palms (Arecaceae), and how these relationships are affected, directly or indirectly, by assemblage richness, climate and biogeographic history. We leverage a new and expanded gape size dataset for nearly all avian frugivores, and find a positive relationship between gape size and fruit size, that is, trait matching, which is influenced indirectly by palm richness and climate. We also uncover a latitudinal gradient in trait matching strength, which increases towards the tropics and varies among zoogeographic realms. Taken together, our results suggest trophic interactions have consistent influences on trait structure, but that abiotic, biogeographic and richness effects also play important, though sometimes indirect, roles in shaping the functional biogeography of mutualisms.


Asunto(s)
Arecaceae , Dispersión de Semillas , Animales , Aves , Frutas , Simbiosis
14.
Nat Ecol Evol ; 5(12): 1582-1593, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34545216

RESUMEN

Many experiments have shown that biodiversity enhances ecosystem functioning. However, we have little understanding of how environmental heterogeneity shapes the effect of diversity on ecosystem functioning and to what extent this diversity effect is mediated by variation in species richness or species turnover. This knowledge is crucial to scaling up the results of experiments from local to regional scales. Here we quantify the diversity effect and its components-that is, the contributions of variation in species richness and species turnover-for 22 ecosystem functions of microorganisms, plants and animals across 13 major ecosystem types on Mt Kilimanjaro, Tanzania. Environmental heterogeneity across ecosystem types on average increased the diversity effect from explaining 49% to 72% of the variation in ecosystem functions. In contrast to our expectation, the diversity effect was more strongly mediated by variation in species richness than by species turnover. Our findings reveal that environmental heterogeneity strengthens the relationship between biodiversity and ecosystem functioning and that species richness is a stronger driver of ecosystem functioning than species turnover. Based on a broad range of taxa and ecosystem functions in a non-experimental system, these results are in line with predictions from biodiversity experiments and emphasize that conserving biodiversity is essential for maintaining ecosystem functioning.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Plantas , Tanzanía
15.
Oecologia ; 195(3): 589-600, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33515062

RESUMEN

Tropical mountain ecosystems are threatened by climate and land-use changes. Their diversity and complexity make projections how they respond to environmental changes challenging. A suitable way are trait-based approaches, by distinguishing between response traits that determine the resistance of species to environmental changes and effect traits that are relevant for species' interactions, biotic processes, and ecosystem functions. The combination of those approaches with land surface models (LSM) linking the functional community composition to ecosystem functions provides new ways to project the response of ecosystems to environmental changes. With the interdisciplinary project RESPECT, we propose a research framework that uses a trait-based response-effect-framework (REF) to quantify relationships between abiotic conditions, the diversity of functional traits in communities, and associated biotic processes, informing a biodiversity-LSM. We apply the framework to a megadiverse tropical mountain forest. We use a plot design along an elevation and a land-use gradient to collect data on abiotic drivers, functional traits, and biotic processes. We integrate these data to build the biodiversity-LSM and illustrate how to test the model. REF results show that aboveground biomass production is not directly related to changing climatic conditions, but indirectly through associated changes in functional traits. Herbivory is directly related to changing abiotic conditions. The biodiversity-LSM informed by local functional trait and soil data improved the simulation of biomass production substantially. We conclude that local data, also derived from previous projects (platform Ecuador), are key elements of the research framework. We specify essential datasets to apply this framework to other mountain ecosystems.


Asunto(s)
Biodiversidad , Ecosistema , Biomasa , Ecuador , Bosques
16.
Sci Rep ; 11(1): 24530, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34972835

RESUMEN

Biodiversity and ecosystem functions are highly threatened by global change. It has been proposed that geodiversity can be used as an easy-to-measure surrogate of biodiversity to guide conservation management. However, so far, there is mixed evidence to what extent geodiversity can predict biodiversity and ecosystem functions at the regional scale relevant for conservation planning. Here, we analyse how geodiversity computed as a compound index is suited to predict the diversity of four taxa and associated ecosystem functions in a tropical mountain hotspot of biodiversity and compare the results with the predictive power of environmental conditions and resources (climate, habitat, soil). We show that combinations of these environmental variables better explain species diversity and ecosystem functions than a geodiversity index and identified climate variables as more important predictors than habitat and soil variables, although the best predictors differ between taxa and functions. We conclude that a compound geodiversity index cannot be used as a single surrogate predictor for species diversity and ecosystem functions in tropical mountain rain forest ecosystems and is thus little suited to facilitate conservation management at the regional scale. Instead, both the selection and the combination of environmental variables are essential to guide conservation efforts to safeguard biodiversity and ecosystem functions.


Asunto(s)
Biodiversidad , Ecosistema , Ambiente , Clima Tropical , Clima , Bosques , Modelos Teóricos , Suelo
17.
Sci Rep ; 10(1): 10855, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32616719

RESUMEN

Plant recruitment is a multi-stage process determining population dynamics and species distributions. Still, we have limited understanding of how the successive demographic processes depend on the environmental context across species' distributional ranges. We conducted a large-scale transplant experiment to study recruitment of Pinus cembra over six years. We quantified the effects of environmental conditions on four demographic processes and identified the most limiting across and beyond the pines' elevational range over several years. Realized transition probabilities of the demographic processes varied substantially across the species' distributional range. Seed deposition decreased from the lower to the upper elevational range margin by 90%, but this reduction was offset by increased seed germination and seedling survival. Dispersal limitation at the upper range margin potentially stems from unsuitable seed caching conditions for the animal seed disperser, whereas increased seed germination might result from enemy escape from fungal pathogens and favourable abiotic conditions at the upper range margin. Our multi-year experiment demonstrates that environmental context is decisive for the local relevance of particular demographic processes. We conclude that experimental studies identifying the limiting demographic processes controlling species distributions are key for projecting future range dynamics of plants.


Asunto(s)
Ecosistema , Fenómenos Fisiológicos de las Plantas , Plantas/clasificación , Plantas/metabolismo , Dinámica Poblacional , Dispersión de Semillas/fisiología , Plantones/fisiología , Animales , Ambiente
18.
Nat Commun ; 11(1): 1582, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32221279

RESUMEN

Downsizing of animal communities due to defaunation is prevalent in many ecosystems. Yet, we know little about its consequences for ecosystem functions such as seed dispersal. Here, we use eight seed-dispersal networks sampled across the Andes and simulate how downsizing of avian frugivores impacts structural network robustness and seed dispersal. We use a trait-based modeling framework to quantify the consequences of downsizing-relative to random extinctions-for the number of interactions and secondary plant extinctions (as measures of structural robustness) and for long-distance seed dispersal (as a measure of ecosystem function). We find that downsizing leads to stronger functional than structural losses. For instance, 10% size-structured loss of bird species results in almost 40% decline of long-distance seed dispersal, but in less than 10% of structural loss. Our simulations reveal that measures of the structural robustness of ecological networks underestimate the consequences of animal extinction and downsizing for ecosystem functioning.


Asunto(s)
Aves/fisiología , Ecosistema , Dispersión de Semillas/fisiología , Animales , Extinción Biológica , Herbivoria
19.
Proc Biol Sci ; 287(1922): 20192873, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32156208

RESUMEN

Interactions between species are influenced by different ecological mechanisms, such as morphological matching, phenological overlap and species abundances. How these mechanisms explain interaction frequencies across environmental gradients remains poorly understood. Consequently, we also know little about the mechanisms that drive the geographical patterns in network structure, such as complementary specialization and modularity. Here, we use data on morphologies, phenologies and abundances to explain interaction frequencies between hummingbirds and plants at a large geographical scale. For 24 quantitative networks sampled throughout the Americas, we found that the tendency of species to interact with morphologically matching partners contributed to specialized and modular network structures. Morphological matching best explained interaction frequencies in networks found closer to the equator and in areas with low-temperature seasonality. When comparing the three ecological mechanisms within networks, we found that both morphological matching and phenological overlap generally outperformed abundances in the explanation of interaction frequencies. Together, these findings provide insights into the ecological mechanisms that underlie geographical patterns in resource specialization. Notably, our results highlight morphological constraints on interactions as a potential explanation for increasing resource specialization towards lower latitudes.


Asunto(s)
Aves , Ecosistema , Polinización , Animales , Biodiversidad , Geografía , Plantas
20.
Ecology ; 101(7): e03028, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32112402

RESUMEN

The species composition of local communities varies in space, and its similarity generally decreases with increasing geographic distance between communities, a phenomenon known as distance decay of similarity. It is, however, not known how changes in local species composition affect ecological processes, that is, whether they lead to differences in the local composition of species' functional roles. We studied eight seed-dispersal networks along the South American Andes and compared them with regard to their species composition and their composition of functional roles. We tested (1) if changes in bird species composition lead to changes in the composition of bird functional roles, and (2) if the similarity in species composition and functional-role composition decreased with increasing geographic distance between the networks. We also used cluster analysis to (3) identify bird species with similar roles across all networks based on the similarity in the plants they consume, (i) considering only the species identity of the plants and (ii) considering the functional traits of the plants. Despite strong changes in species composition, the networks along the Andes showed similar composition of functional roles. (1) Changes in species composition generally did not lead to changes in the composition of functional roles. (2) Similarity in species composition, but not functional-role composition, decreased with increasing geographic distance between the networks. (3) The cluster analysis considering the functional traits of plants identified bird species with similar functional roles across all networks. The similarity in functional roles despite the high species turnover suggests that the ecological process of seed dispersal is organized similarly along the Andes, with similar functional roles fulfilled locally by different sets of species. The high species turnover, relative to functional turnover, also indicates that a large number of bird species are needed to maintain the seed-dispersal process along the Andes.


Asunto(s)
Dispersión de Semillas , Animales , Aves , Ecosistema , Frutas , Plantas , Semillas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...