Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EJNMMI Res ; 6(1): 64, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27515447

RESUMEN

BACKGROUND: Radiation-induced nephropathy is still dose limiting in radionuclide therapy of neuroendocrine tumors. We investigated the nephroprotective potential of the angiotensine converting enzyme inhibiting drug enalpril after [177Lu]-DOTATATE therapy in a murine model of radiation-induced nephropathy by renal scintigraphy. At first, the appropriate therapy activity to induce nephropathy was identified. Baseline scintigraphy (n = 12) entailed 12-min dynamic acquisitions after injection of 25 MBq [99mTc]-MAG3, which was followed by radionuclide therapy at four escalating activities of [177Lu]-DOTATATE: group (Gp) 1: 10 MBq; Gp 2: 20 MBq; Gp 3: 40 MBq; Gp 4: 65 MBq. Follow-up [99mTc]-MAG3 scintigraphy was carried out at days 9, 23, 44, and 65. The treatment activity for the intervention arm was selected on the basis of histological examination and declining renal function. In the second part, daily administration by gavage of 10 mg/kg/d enalapril or water (control group) was initiated on the day of radionuclide therapy. Follow-up scintigraphy was carried out at days 9, 23, 44, 65, and 86. We also created a non-therapy control group to detect therapy-independent changes of renal function over time. For all scintigraphies, mean renogram curves were analyzed and the "fractional uptake rate" (FUR; %I.D./min ± SEM) of the tracer by the kidneys was calculated as an index of renal clearance. RESULTS: At day 65 of follow-up, no significant change in the FUR relative to baseline (11.0 ± 0.3) was evident in radionuclide therapy groups 1 (11.2 ± 0.5) and 2 (10.1 ± 0.6), but FUR was significantly reduced in groups 3 (8.93 ± 0.6, p < 0.05) and 4 (6.0 ± 0.8, p < 0.01); we chose 40 MBq [177Lu]-DOTATATE (Gp 3) for the intervention study. Here, at the last day of follow-up (day 86), FUR was unaltered in enalapril-treated mice (11.8 ± 0.5) relative to the baseline group (12.4 ± 0.3) and non-therapy group (11.9 ± 0.8), whereas FUR in the control group had undergone a significant decline (9.3 ± 0.5; p < 0.01). Histological examination revealed prevention of kidney damage by enalapril treatment. CONCLUSIONS: Treatment with enalapril is effective for nephroprotection during radionuclide therapy with [177Lu]-DOTATATE in mice. Although these results are only limitedly transferable to human studies, enalapril might serve as a promising drug in the mitigation of nephropathy following treatment with [177Lu]-DOTATATE.

2.
Toxicol Pathol ; 44(3): 367-72, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26674803

RESUMEN

Minipigs have been used for dermal drug development studies for decades, and they are currently more frequently considered as the second nonrodent species for pivotal nonclinical studies, in lieu of the dog or nonhuman primate, for compounds delivered via standard systemic routes of administration. Little is known about the tolerability of different excipients in minipigs; sharing knowledge of excipient tolerability and compositions previously used in nonclinical studies may avoid testing of inadequate formulations, thereby contributing to reduced animal usage. This article reviews vehicles employed in the Göttingen(®)minipig based on the combined experience from a number of pharmaceutical companies and contract research organizations. The review includes vehicles tolerated for single or multiple dosing by the Göttingen minipig, some of which are not appropriate for administration to other common nonrodent species (e.g., dogs). By presenting these data for dermal, oral, subcutaneous, and intravenous routes of administration, studies to qualify these vehicles in minipigs can be minimized or avoided. Additionally, investigators may more frequently consider using the minipig in place of higher species if the tolerability of a vehicle in the minipig is known.


Asunto(s)
Investigación Biomédica , Descubrimiento de Drogas , Vehículos Farmacéuticos , Porcinos Enanos , Animales , Vías de Administración de Medicamentos , Excipientes , Porcinos
3.
Brain Struct Funct ; 221(1): 159-70, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25269833

RESUMEN

Unilateral inner ear damage is followed by a rapid behavioural recovery due to central vestibular compensation. In this study, we utilized serial [(18)F]Fluoro-deoxyglucose ([(18)F]FDG)-µPET imaging in the rat to visualize changes in brain glucose metabolism during behavioural recovery after surgical and chemical unilateral labyrinthectomy, to determine the extent and time-course of the involvement of different brain regions in vestibular compensation and test previously described hypotheses of underlying mechanisms. Systematic patterns of relative changes of glucose metabolism (rCGM) were observed during vestibular compensation. A significant asymmetry of rCGM appeared in the vestibular nuclei, vestibulocerebellum, thalamus, multisensory vestibular cortex, hippocampus and amygdala in the acute phase of vestibular imbalance (4 h). This was followed by early vestibular compensation over 1-2 days where rCGM re-balanced between the vestibular nuclei, thalami and temporoparietal cortices and bilateral rCGM increase appeared in the hippocampus and amygdala. Subsequently over 2-7 days, rCGM increased in the ipsilesional spinal trigeminal nucleus and later (7-9 days) rCGM increased in the vestibulocerebellum bilaterally and the hypothalamus and persisted in the hippocampus. These systematic dynamic rCGM patterns during vestibular compensation, were confirmed in a second rat model of chemical unilateral labyrinthectomy by serial [(18)F]FDG-µPET. These findings show that deafferentation-induced plasticity after unilateral labyrinthectomy involves early mechanisms of re-balancing predominantly in the brainstem vestibular nuclei but also in thalamo-cortical and limbic areas, and indicate the contribution of spinocerebellar sensory inputs and vestibulocerebellar adaptation at the later stages of behavioural recovery.


Asunto(s)
Vías Auditivas/metabolismo , Encéfalo/metabolismo , Plasticidad Neuronal , Núcleos Vestibulares/metabolismo , Vestíbulo del Laberinto/lesiones , Animales , Vías Auditivas/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Fluorodesoxiglucosa F18 , Glucosa/metabolismo , Masculino , Nistagmo Patológico/etiología , Tomografía de Emisión de Positrones , Postura , Ratas , Ratas Sprague-Dawley , Núcleos Vestibulares/diagnóstico por imagen , Vestíbulo del Laberinto/inervación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...