Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Free Radic Biol Med ; 187: 38-49, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35605898

RESUMEN

Integrin-mediated cell contacts with the extracellular matrix (ECM) are essential for cellular adhesion, force transmission, and migration. Several effectors, such as divalent cations and redox-active compounds, regulate ligand binding activities of integrins and influence their cellular functions. To study the role of the Ca2+ binding site within the hinge region of the integrin α7 subunit, we genetically abrogated it in the α7hiΔCa mutant. This mutant folded correctly, associated with the ß1 subunit and was exposed on the cell surface, but showed reduced ligand binding and weaker cell adhesion to laminin-111. Thus, it resembles the α7hiΔSS mutant, in which the redox-regulated pair of cysteines, closeby to the Ca2+ binding site within the hinge, was abrogated. Comparing both mutants in adhesion strength and cell migration revealed that both Ca2+ complexation and redox-regulation within the hinge interdepend on each other. Moreover, protein-chemical analyses of soluble integrin ectodomains containing the same α7 hinge mutations suggest that integrin activation via the subunit α hinge is primed by the formation of the cysteine pair-based crosslinkage. Then, this allows Ca2+ complexation within the hinge, which is another essential step for integrin activation and ligand binding. Thus, the α hinge is an allosteric integrin regulation site, in which both effectors, Ca2+ and redox-active compounds, synergistically and hierarchically induce far-ranging conformational changes, such as the extension of the integrin ectodomain, resulting in integrin activation of ECM ligand binding and altered integrin-mediated cell functions.


Asunto(s)
Integrinas , Compuestos de Sulfhidrilo , Sitios de Unión/genética , Adhesión Celular , Integrinas/genética , Ligandos , Oxidación-Reducción
2.
Cancers (Basel) ; 12(8)2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32752204

RESUMEN

Cadherins mediate cohesive contacts between isotypic cells by homophilic interaction and prevent contact between heterotypic cells. Breast cancer cells neighboring endothelial cells (ECs) atypically express vascular endothelial (VE)-cadherin. To understand this EC-induced VE-cadherin expression in breast cancer cells, MCF7 and MDA-MB-231 cells expressing different endogenous cadherins were co-cultured with ECs and analyzed for VE-cadherin at the transcriptional level and by confocal microscopy, flow cytometry, and immunoblotting. After losing their endogenous cadherins and neo-expression of VE-cadherin, these cells integrated into an EC monolayer without compromising the barrier function instantly. However, they induced the death of nearby ECs. EC-derived extracellular vesicles (EVs) contained soluble and membrane-anchored forms of VE-cadherin. Only the latter was re-utilized by the cancer cells. In a reporter gene assay, EC-adjacent cancer cells also showed a juxtacrine but no paracrine activation of the endogenous VE-cadherin gene. This cadherin switch enabled intimate contact between cancer and endothelial cells in a chicken chorioallantoic membrane tumor model showing vasculogenic mimicry (VM). This EV-mediated, EC-induced cadherin switch in breast cancer cells and the neo-expression of VE-cadherin mechanistically explain the mutual communication in the tumor microenvironment. Hence, it may be a target to tackle VM, which is often found in breast cancers of poor prognosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA