Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(5): e17298, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38712640

RESUMEN

Diversified crop rotations have been suggested to reduce grain yield losses from the adverse climatic conditions increasingly common under climate change. Nevertheless, the potential for climate change adaptation of different crop rotational diversity (CRD) remains undetermined. We quantified how climatic conditions affect small grain and maize yields under different CRDs in 32 long-term (10-63 years) field experiments across Europe and North America. Species-diverse and functionally rich rotations more than compensated yield losses from anomalous warm conditions, long and warm dry spells, as well as from anomalous wet (for small grains) or dry (for maize) conditions. Adding a single functional group or crop species to monocultures counteracted yield losses from substantial changes in climatic conditions. The benefits of a further increase in CRD are comparable with those of improved climatic conditions. For instance, the maize yield benefits of adding three crop species to monocultures under detrimental climatic conditions exceeded the average yield of monocultures by up to 553 kg/ha under non-detrimental climatic conditions. Increased crop functional richness improved yields under high temperature, irrespective of precipitation. Conversely, yield benefits peaked at between two and four crop species in the rotation, depending on climatic conditions and crop, and declined at higher species diversity. Thus, crop species diversity could be adjusted to maximize yield benefits. Diversifying rotations with functionally distinct crops is an adaptation of cropping systems to global warming and changes in precipitation.


Asunto(s)
Cambio Climático , Productos Agrícolas , Zea mays , Productos Agrícolas/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , América del Norte , Europa (Continente) , Grano Comestible/crecimiento & desarrollo , Agricultura/métodos , Biodiversidad , Producción de Cultivos/métodos
2.
J Environ Qual ; 53(1): 66-77, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37889790

RESUMEN

Fall-planted cover crop (CC) within a continuous corn (Zea mays L.) system offers potential agroecosystem benefits, including mitigating the impacts of increased temperature and variability in precipitation patterns. A long-term simulation using the Decision Support System for Agrotechnology Transfer model was made to assess the effects of cereal rye (Secale cereale L.) on no-till continuous corn yield and soil properties under historical (1991-2020) and projected climate (2041-2070) in eastern Nebraska. Local weather data during the historical period were used, while climate change projections were based on the Canadian Earth System Model 2 dynamically downscaled using the Canadian Centre for Climate Modelling and Analysis Regional Climate Model 4 under two representative concentration pathways (RCP), namely, RCP4.5 and RCP8.5. Simulations results indicated that CC impacts on corn yield were nonsignificant under historical and climate change conditions. Climate change created favorable conditions for CC growth, resulting in an increase in biomass. CC reduced N leaching under climate change scenarios compared to an average reduction of 60% (7 kg ha- 1 ) during the historical period. CC resulted in a 6% (27 mm) reduction in total water in soil profile (140 cm) and 22% (27 mm) reduction in plant available water compared to no cover crop during historical period. CC reduced cumulative seasonal surface runoff/soil evaporation and increased the rate of soil organic carbon buildup. This research provides valuable information on how changes in climate can impact the performance of cereal rye CC in continuous corn production and should be scaled to wider locations and CC species.


Asunto(s)
Agricultura , Suelo , Agricultura/métodos , Zea mays , Nebraska , Carbono/análisis , Productos Agrícolas , Canadá , Grano Comestible/química , Grano Comestible/metabolismo , Cambio Climático , Secale/metabolismo , Agua
3.
Sci Total Environ ; 879: 162906, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-36934923

RESUMEN

Despite the extensive application of the Soil and Water Assessment Tool (SWAT) for water quality modeling, its ability to simulate soil inorganic nitrogen (SIN) dynamics in agricultural landscapes has not been directly verified. Here, we improved and evaluated the SWAT-Carbon (SWAT-C) model for simulating long-term (1984-2020) dynamics of SIN for 40 cropping system treatments in the U.S. Midwest. We added one new nitrification and two new denitrification algorithms to the default SWAT version, resulting in six combinations of nitrification and denitrification options with varying performance in simulating SIN. The combination of the existing nitrification method in SWAT and the second newly added denitrification method performed the best, achieving R, NSE, PBIAS, and RMSE of 0.63, 0.29, -4.7 %, and 16.0 kg N ha-1, respectively. This represents a significant improvement compared to the existing methods. In general, the revised SWAT-C model's performance was comparable to or better than other agroecosystem models tested in previous studies for assessing the availability of SIN for plant growth in different cropping systems. Sensitivity analysis showed that parameters controlling soil organic matter decomposition, nitrification, and denitrification were most sensitive for SIN simulation. Using SWAT-C for improved prediction of plant-available SIN is expected to better inform agroecosystem management decisions to ensure crop productivity while minimizing the negative environmental impacts caused by fertilizer application.

4.
Appl Environ Microbiol ; 87(12): e0313220, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-33811028

RESUMEN

Root-associated microbes are key players in plant health, disease resistance, and nitrogen (N) use efficiency. It remains largely unclear how the interplay of biological and environmental factors affects rhizobiome dynamics in agricultural systems. In this study, we quantified the composition of rhizosphere and bulk soil microbial communities associated with maize (Zea mays L.) and soybean (Glycine max L.) in a long-term crop rotation study under conventional fertilization and low-N regimes. Over two growing seasons, we evaluated the effects of environmental conditions and several treatment factors on the abundance of rhizosphere- and soil-colonizing microbial taxa. Time of sampling, host plant species, and N fertilization had major effects on microbiomes, while no effect of crop rotation was observed. Using variance partitioning as well as 16S sequence information, we further defined a set of 82 microbial genera and functional taxonomic groups at the subgenus level that show distinct responses to treatment factors. We identified taxa that are highly specific to either maize or soybean rhizospheres, as well as taxa that are sensitive to N fertilization in plant rhizospheres and bulk soil. This study provides insights to harness the full potential of soil microbes in maize and soybean agricultural systems through plant breeding and field management. IMPORTANCE Plant roots are colonized by large numbers of microbes, some of which may help the plant acquire nutrients and fight diseases. Our study contributes to a better understanding of root-colonizing microbes in the widespread and economically important maize-soybean crop rotation system. The long-term goal of this research is to optimize crop plant varieties and field management to create the best possible conditions for beneficial plant-microbe interactions to occur. These beneficial microbes may be harnessed to sustainably reduce dependency on pesticides and industrial fertilizer. We identify groups of microbes specific to the maize or to the soybean host and microbes that are sensitive to nitrogen fertilization. These microbes represent candidates that may be influenced through plant breeding or field management, and future research will be directed toward elucidating their roles in plant health and nitrogen usage.


Asunto(s)
Agricultura/métodos , Glycine max/efectos de los fármacos , Microbiota/efectos de los fármacos , Nitrógeno/farmacología , Rizosfera , Zea mays/efectos de los fármacos , Fertilizantes , Estaciones del Año , Microbiología del Suelo , Glycine max/microbiología , Zea mays/microbiología
5.
J Environ Manage ; 285: 112097, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33578214

RESUMEN

Agricultural production is a major source of carbon dioxide (CO2) and nitrous oxide (N2O) globally. The effects of conservation practices on soil CO2 and N2O emissions remain a high degree of uncertainty. In this study, soil CO2 and N2O emissions under different residue and tillage practices in an irrigated, continuous corn system, were investigated using the Root Zone Water Quality Model (RZWQM2). Combinations of no/high stover removal (NR and HR, respectively) and no-till/conventional tillage (NT and CT, respectively) field experiments were tested over the four crop-years (Apr. 2011-Apr. 2015). The model was calibrated using the NRCT, and validated with other treatments. The simulation results showed that soil volumetric water content (VWC) in the NR treatments (i.e., NRCT and NRNT) was 1.3%-1.9% higher than that in the HR treatments (i.e., HRCT and HRNT) averaged across the four years. A higher amount of CO2 and N2O emissions were simulated in the NRCT across the four years (annual average: 7034 kg C/ha/yr for CO2 and 3.8 kg N/ha/yr for N2O), and lower emissions were in the HRNT (annual average: 6329 kg C/ha/yr and 3.7 kg N/ha/yr for N2O). A long-term simulation (2001-2015) suggested that the CO2 and N2O emissions were closely correlated with the stover removal degree (SRD), tillage, VWC, soil temperature (ST), years in management (Y), and fertilizer application. Stover and tillage practices had cumulative effects on CO2 emissions. The simulated annual CO2 emissions in 1st year from NRCT, NRNT, and HRCT were 7.8%, 0.0%, and 7.7% higher than that from HRNT, respectively; then the emissions in 15th year were 63.6%, 47.7%, and 29.1% higher, respectively. Meanwhile, there were no cumulative effects on N2O emissions. The results also demonstrated that the RZWQM2 is a promising tool for evaluating the long-term effects of CO2 and N2O emissions on different conservation practices.


Asunto(s)
Gases de Efecto Invernadero , Agricultura , Dióxido de Carbono/análisis , Fertilizantes/análisis , Óxido Nitroso/análisis , Suelo , Calidad del Agua , Zea mays
6.
Sci Adv ; 5(12): eaav9318, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31897423

RESUMEN

Bio-based energy is key to developing a globally sustainable low-carbon economy. Lignocellulosic feedstock production on marginally productive croplands is expected to provide substantial climate mitigation benefits, but long-term field research comparing greenhouse gas (GHG) outcomes during the production of annual versus perennial crop-based feedstocks is lacking. Here, we show that long-term (16 years) switchgrass (Panicum virgatum L.) systems mitigate GHG emissions during the feedstock production phase compared to GHG-neutral continuous corn (Zea mays L.) under conservation management on marginally productive cropland. Increased soil organic carbon was the major GHG sink in all feedstock systems, but net agronomic GHG outcomes hinged on soil nitrous oxide emissions controlled by nitrogen (N) fertilizer rate. This long-term field study is the first to demonstrate that annual crop and perennial grass systems respectively maintain or mitigate atmospheric GHG contributions during the agronomic phase of bioenergy production, providing flexibility for land-use decisions on marginally productive croplands.

7.
J Environ Qual ; 47(4): 704-709, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30025056

RESUMEN

The western US Corn Belt is projected to experience major changes in growing conditions due to climate change over the next 50 to 100 yr. Projected changes include increases in growing season length, number of high temperature stress days and warm nights, and precipitation, with more heavy rainfall events. The impact these changes will have on soil organic carbon (SOC) needs to be estimated and adaptive changes in management developed to sustain soil health and system services. The process-based model CQESTR was used to model changes in SOC stocks (0-30 cm) of continuous corn ( L.) and a corn-soybean [ (L.) Merr.] rotation under disk, chisel, ridge, and no-tillage using projected growing season conditions for the next 50 yr. Input for the model was based on management and harvest records from a long-term tillage study (1986-2015) in eastern Nebraska, and model output was validated using measured changes in SOC from 1999 to 2011 in the study. The validated model was used to estimate changes in SOC over 17 yr under climatic conditions projected for 2065 under two scenarios: (i) crop yields increasing at the observed rate from 1971 to 2016 or (ii) crop yields reduced due to negative effects of increasing temperature. CQESTR estimates of SOC agreed well with measured SOC ( = 0.70, < 0.0001). Validated model simulated changes in SOC under projected climate change differed among the three soil depths (0-7.5, 7.5-15, and 15-30 cm). Summed over the 0- to 30-cm depth, there were significant three-way interactions of year × rotation × yield ( = 0.014) and year × tillage × yield ( < 0.001). As yield increased, SOC increased under no-tillage continuous corn but was unchanged under no-tillage corn-soybean and ridge tillage regardless of cropping system. Under chisel and disk tillage, SOC declined regardless of cropping system. With declining yields SOC decreased regardless of tillage or cropping system. These results highlight the interaction between genetics and management in maintaining yield trends and soil C.


Asunto(s)
Carbono , Cambio Climático , Zea mays , Agricultura , Productos Agrícolas , Suelo/química
8.
Glob Chang Biol ; 23(7): 2848-2862, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28135027

RESUMEN

Over the last 50 years, the most increase in cultivated land area globally has been due to a doubling of irrigated land. Long-term agronomic management impacts on soil organic carbon (SOC) stocks, soil greenhouse gas (GHG) emissions, and global warming potential (GWP) in irrigated systems, however, remain relatively unknown. Here, residue and tillage management effects were quantified by measuring soil nitrous oxide (N2 O) and methane (CH4 ) fluxes and SOC changes (ΔSOC) at a long-term, irrigated continuous corn (Zea mays L.) system in eastern Nebraska, United States. Management treatments began in 2002, and measured treatments included no or high stover removal (0 or 6.8 Mg DM ha-1  yr-1 , respectively) under no-till (NT) or conventional disk tillage (CT) with full irrigation (n = 4). Soil N2 O and CH4 fluxes were measured for five crop-years (2011-2015), and ΔSOC was determined on an equivalent mass basis to ~30 cm soil depth. Both area- and yield-scaled soil N2 O emissions were greater with stover retention compared to removal and for CT compared to NT, with no interaction between stover and tillage practices. Methane comprised <1% of total emissions, with NT being CH4 neutral and CT a CH4 source. Surface SOC decreased with stover removal and with CT after 14 years of management. When ΔSOC, soil GHG emissions, and agronomic energy usage were used to calculate system GWP, all management systems were net GHG sources. Conservation practices (NT, stover retention) each decreased system GWP compared to conventional practices (CT, stover removal), but pairing conservation practices conferred no additional mitigation benefit. Although cropping system, management equipment/timing/history, soil type, location, weather, and the depth to which ΔSOC is measured affect the GWP outcomes of irrigated systems at large, this long-term irrigated study provides valuable empirical evidence of how management decisions can impact soil GHG emissions and surface SOC stocks.


Asunto(s)
Productos Agrícolas , Calentamiento Global , Zea mays/crecimiento & desarrollo , Riego Agrícola , Agricultura , Efecto Invernadero , Óxido Nitroso , Suelo
9.
PLoS One ; 9(3): e89501, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24594783

RESUMEN

Low-carbon biofuel sources are being developed and evaluated in the United States and Europe to partially offset petroleum transport fuels. Current and potential biofuel production systems were evaluated from a long-term continuous no-tillage corn (Zea mays L.) and switchgrass (Panicum virgatum L.) field trial under differing harvest strategies and nitrogen (N) fertilizer intensities to determine overall environmental sustainability. Corn and switchgrass grown for bioenergy resulted in near-term net greenhouse gas (GHG) reductions of -29 to -396 grams of CO2 equivalent emissions per megajoule of ethanol per year as a result of direct soil carbon sequestration and from the adoption of integrated biofuel conversion pathways. Management practices in switchgrass and corn resulted in large variation in petroleum offset potential. Switchgrass, using best management practices produced 3919±117 liters of ethanol per hectare and had 74±2.2 gigajoules of petroleum offsets per hectare which was similar to intensified corn systems (grain and 50% residue harvest under optimal N rates). Co-locating and integrating cellulosic biorefineries with existing dry mill corn grain ethanol facilities improved net energy yields (GJ ha-1) of corn grain ethanol by >70%. A multi-feedstock, landscape approach coupled with an integrated biorefinery would be a viable option to meet growing renewable transportation fuel demands while improving the energy efficiency of first generation biofuels.


Asunto(s)
Biocombustibles , Productos Agrícolas/crecimiento & desarrollo , Gases/análisis , Efecto Invernadero , Productos Agrícolas/efectos de los fármacos , Nitrógeno/farmacología , Panicum/efectos de los fármacos , Panicum/crecimiento & desarrollo , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...