Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Prev Nutr Food Sci ; 27(2): 172-179, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35919566

RESUMEN

Obesity involving adipose tissue growth and development are associated with angiogenesis and extracellular matrix remodeling. Rice bran has antioxidant and cardioprotective properties, and can act as a food supplement with potential health benefits, such as lowering blood pressure, hepatic steatosis, and inflammation. Therefore, we hypothesized that rice bran extract (RBE) can regulate adipose tissue growth and obesity. Male Institute of Cancer Research mice were fed with a high-fat diet (HFD) for 8 weeks and then supplemented with 220 and 1,100 mg/kg/d RBE while the low-fat diet group (control) were not. In addition to body weight, adipose tissue mass, and vessel density, we evaluated the mRNA expression of angiogenic factors such as matrix metalloproteinases, Mmp-2, Mmp-9, and the vascular endothelial growth factor (Vegf) in visceral and subcutaneous adipose tissues using real-time polymerase chain reaction. Administration of RBE to HFD-induced obese mice reduced the body weight and adipose tissue mass compared with untreated mice. It also decreased blood vessel density in the adipose tissue. Furthermore, RBE downregulated Vegf and Mmp-2 mRNA levels in visceral fat tissue. These results demonstrate that RBE, at high concentrations, significantly reduces adipose tissue mass and prevents obesity development in HFD-induced obese mice, which might be partly mediated via an anti-angiogenic mechanism.

2.
Eur J Trauma Emerg Surg ; 48(3): 1579-1588, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33483765

RESUMEN

PURPOSE: Trauma and hemorrhagic shock (T/HS) is a major cause of morbidity and mortality. Existing treatment options are largely limited to source control and fluid and blood repletion. Previously, we have shown that enteral protease inhibition improves outcomes in experimental models of T/HS by protecting the gut from malperfusion and ischemia. However, enteral protease inhibition was achieved invasively, by laparotomy and direct injection of tranexamic acid (TXA) into the small intestine. In this study, we tested a minimally invasive method of enteral protease inhibitor infusion in experimental T/HS that can be readily adapted for clinical use. METHODS: Wistar rats were exsanguinated to a mean arterial blood pressure (MABP) of 40 mmHg, with laparotomy to induce trauma. Hypovolemia was maintained for 120 min and was followed by reperfusion of shed blood. Animals were monitored for an additional 120 min. A modified orogastric multi-lumen tube was developed to enable rapid enteral infusion of a protease inhibitor solution while simultaneously mitigating risk of reflux aspiration into the airways. The catheter was used to deliver TXA (T/HS + TXA) or vehicle (T/HS) continuously into the proximal small intestine, starting 20 min into the ischemic period. RESULTS: Rats treated with enteral protease inhibition (T/HS + TXA) displayed improved outcomes compared to control animals (T/HS), including significantly improved MABP (p = 0.022) and lactate (p = 0.044). Mass spectrometry-based analysis of the plasma peptidome after T/HS indicated mitigation of systemic proteolysis in T/HS + TXA. CONCLUSION: Minimally invasive, continuous enteral protease inhibitor delivery improves outcomes in T/HS and is readily translatable to the clinical arena.


Asunto(s)
Choque Hemorrágico , Ácido Tranexámico , Animales , Modelos Animales de Enfermedad , Humanos , Intestino Delgado , Isquemia , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/uso terapéutico , Ratas , Ratas Wistar , Choque Hemorrágico/tratamiento farmacológico , Ácido Tranexámico/uso terapéutico
3.
Cell Mol Bioeng ; 14(6): 583-596, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34900012

RESUMEN

INTRODUCTION: Heart failure is associated with degradation of cell functions and extracellular matrix proteins, but the trigger mechanisms are uncertain. Our recent evidence shows that active digestive enzymes can leak out of the small intestine into the systemic circulation and cause cell dysfunctions and organ failure. METHODS: Accordingly, we investigated in morning fasting plasma of heart failure (HF) patients the presence of pancreatic trypsin, a major enzyme responsible for digestion. RESULTS: Western analysis shows that trypsin in plasma is significantly elevated in HF compared to matched controls and their concentrations correlate with the cardiac dysfunction biomarker BNP and inflammatory biomarkers CRP and TNF-α. The plasma trypsin levels in HF are accompanied by elevated pancreatic lipase concentrations. The trypsin has a significantly elevated activity as determined by substrate cleavage. Mass spectrometry shows that the number of plasma proteins in the HF patients is similar to controls while the number of peptides was increased about 20% in HF patients. The peptides are derived from extracellular and intracellular protein sources and exhibit cleavage sites by trypsin as well as other degrading proteases (data are available via ProteomeXchange with identifier PXD026332).ConnclusionsThese results provide the first evidence that active digestive enzymes leak into the systemic circulation and may participate in myocardial cell dysfunctions and tissue destruction in HF patients. CONCLUSIONS: These results provide the first evidence that active digestive enzymes leak into the systemic circulation and may participate in myocardial cell dysfunctions and tissue destruction in HF patients. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12195-021-00693-w.

4.
Temperature (Austin) ; 8(3): 223-244, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34527763

RESUMEN

Enhanced intestinal permeability is a pervasive issue in modern medicine, with implications demonstrably associated with significant health consequences such as sepsis, multiorgan failure, and death. Key issues involve the trigger mechanisms that could compromise intestinal integrity and increase local permeability allowing the passage of larger, potentially dangerous molecules. Heat stress, whether exertional or environmental, may modulate intestinal permeability and begs interesting questions in the context of global climate change, increasing population vulnerabilities, and public health. Emerging evidence indicates that intestinal leakage of digestive enzymes and associated cell dysfunctions--a process referred to as autodigestion--may play a critical role in systemic physiological damage within the body. This increased permeability is exacerbated in the presence of elevated core temperatures. We employed Latent Dirichlet Allocation (LDA) topic modeling methods to analyze the relationship between heat stress and the nascent theory of autodigestion in a systematic, quantifiable, and unbiased manner. From a corpus of 11,233 scientific articles across four relevant scientific journals (Gut, Shock, Temperature, Gastroenterology), it was found that over 1,000 documents expressed a relationship between intestine, enhanced permeability, core temperature, and heat stress. The association has grown stronger in recent years, as heat stress and potential autodigestion are investigated in tandem, yet still by a limited number of specific research studies. Such findings justify the design of future studies to critically test novel interventions against digestive enzymes permeating the intestinal tract, especially the small intestine.

5.
Crit Care Explor ; 3(7): e0469, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34250499

RESUMEN

Refractory vascular failure due to the inability of vascular smooth muscle to respond to vasoconstrictors such as phenylephrine is a final common pathway for severe circulatory shock of any cause, including trauma/hemorrhagic shock. Increased inflammation, Toll-like receptor 4 activation, and decreased response of the alpha-1 adrenergic receptors which control vascular tone have been reported in trauma/hemorrhagic shock. HYPOTHESIS: In trauma/hemorrhagic shock, Toll-like receptor 4 activation contributes to vascular failure via decreased bioavailability of adrenergic receptors. DESIGN AND MEASUREMENTS: Trauma/hemorrhagic shock was induced in Wistar rats (laparotomy combined with mean arterial pressure at 40 mm Hg for 90 min followed by 2 hr resuscitation with Lactated Ringers solution). To inhibit Toll-like receptor 4, resatorvid (TAK-242) and resveratrol were used, and plasma was collected. Smooth muscle cells were incubated with lipopolysaccharide (10 ng/mL) or plasma. Inflammatory cytokines were screened using dot-blot. Toll-like receptor 4 and nuclear factor κB activation and cellular localization of the alpha-1 adrenergic receptor were measured by immunofluorescence imaging and Western blot analysis. Clustered regularly interspaced short palindromic repeats/Cas9 was used to knock out Toll-like receptor 4, and calcium influx following stimulation with phenylephrine was recorded. MAIN RESULTS: Trauma/hemorrhagic shock caused a decreased response to phenylephrine, whereas Toll-like receptor 4 inhibition improved blood pressure. Trauma/hemorrhagic shock plasma activated the Toll-like receptor 4/nuclear factor κB pathway in smooth muscle cells. Double labeling of Toll-like receptor 4 and the alpha-1 adrenergic receptor showed that these receptors are colocalized on the cell membrane. Activation of Toll-like receptor 4 caused cointernalization of both receptors. Calcium influx was impaired in cells incubated with trauma/hemorrhagic shock plasma but restored when Toll-like receptor 4 was knocked out or inhibited. CONCLUSIONS: Activation of the Toll-like receptor 4 desensitizes vascular smooth muscle cells to vasopressors in experimental trauma/hemorrhagic shock by reducing the levels of membrane alpha-1 adrenergic receptor.

6.
J Biomech ; 120: 110394, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33784517

RESUMEN

Leukocytes (neutrophils, monocytes) in the active circulation exhibit multiple phenotypic indicators for a low level of cellular activity, like lack of pseudopods and minimal amounts of activated, cell-adhesive integrins on their surfaces. In contrast, before these cells enter the circulation in the bone marrow or when they recross the endothelium into extravascular tissues of peripheral organs they are fully activated. We review here a multifaceted mechanism mediated by fluid shear stress that can serve to deactivate leukocytes in the circulation. The fluid shear stress controls pseudopod formation via the FPR receptor, the same receptor responsible for pseudopod projection by localized actin polymerization. The bioactivity of macromolecular factors in the blood plasma that interfere with receptor stimulation by fluid flow, such as proteolytic cleavage in the extracellular domain of the receptor or the membrane actions of cholesterol, leads to a defective ability to respond to fluid shear stress by actin depolymerization. The cell reaction to fluid shear involves CD18 integrins, nitric oxide, cGMP and Rho GTPases, is attenuated in the presence of inflammatory mediators and modified by glucocorticoids. The mechanism is abolished in disease models (genetic hypertension and hypercholesterolemia) leading to an increased number of activated leukocytes in the circulation with enhanced microvascular resistance and cell entrapment. In addition to their role in binding to biochemical agonists/antagonists, membrane receptors appear to play a second role: to monitor local fluid shear stress levels. The fluid shear stress control of many circulating cell types such as lymphocytes, stem cells, tumor cells remains to be elucidated.


Asunto(s)
Leucocitos , Mecanotransducción Celular , Neutrófilos , Seudópodos , Resistencia al Corte , Estrés Mecánico
7.
J Nutr Metab ; 2020: 8374287, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32685208

RESUMEN

BACKGROUND: Inflammation and hypertension are primary mechanisms involving in obesity-associated adverse effects of a high-fat diet. The aim of this study was to evaluate the effects of rice bran extract (RBE) on arterial blood pressure, hepatic steatosis, inflammation, and oxidative stress in high-fat diet (HFD)-induced obese mice. METHODS: Male ICR mice were divided into four groups, including a normal-diet control group, a high-fat diet (HFD) (60% kcal from fat) group, an HFD group treated with RBE (220 mg/kg/day), and an HFD group treated with 1100 mg/kg/day for eight weeks. Besides body weight and arterial blood pressure, we determined liver values of total cholesterol, triglyceride, as well as percent body fat, tumor necrosis factor-α (TNF-α), malondialdehyde (MDA), nuclear factor kappa-B (NF-κB), matrix metalloprotease-9 (MMP-9), cyclooxygenase-2 (COX-2), and mRNA endothelial nitric oxide synthase (eNOS). RESULTS: The HFD group had increased body weight, increased systolic and diastolic blood pressure, liver total cholesterol, triglyceride, NF-κB, COX-2 and MMP-9 protein levels, and decreased mRNA eNOS in the aorta. Mice of the HFD group receiving RBE had reduced diastolic blood pressure, as well as significantly decreased liver and serum TNF-α and MDA levels in the liver, and reduced NF-κB levels in both the liver and heart. CONCLUSIONS: These results demonstrate that RBE decreases diastolic blood pressure, the liver lipid droplet accumulation, liver and myocardial NF-κB, myocardial COX-2 and MMP-9 protein levels, and oxidative stress. Moreover, RBE may improve endothelial function and may alleviate adverse health effects associated with obesity including obesity-associated hypertension.

8.
Sci Rep ; 10(1): 1725, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-32015418

RESUMEN

Recent evidence suggests that enhanced protease-mediated inflammation may promote insulin resistance and result in diabetes. This study tested the hypothesis that serine protease plays a pivotal role in type 2 diabetes, and inhibition of serine protease activity prevents hyperglycemia in diabetic animals by modulating insulin signaling pathway. We conducted a single-center, cross-sectional study with 30 healthy controls and 57 patients with type 2 diabetes to compare plasma protease activities and inflammation marker between groups. Correlations of plasma total and serine protease activities with variables were calculated. In an in-vivo study, LDLR-/- mice were divided into normal chow diet, high-fat diet (HFD), and HFD with selective serine protease inhibition groups to examine the differences of obesity, blood glucose level, insulin resistance and serine protease activity among groups. Compared with controls, diabetic patients had significantly increased plasma total protease, serine protease activities, and also elevated inflammatory cytokines. Plasma serine protease activity was positively correlated with body mass index, hemoglobin A1c, homeostasis model assessment-insulin resistance index (HOMA-IR), tumor necrosis factor-α, and negatively with adiponectin concentration. In the animal study, administration of HFD progressively increased body weight, fasting glucose level, HOMA-IR, and upregulated serine protease activity. Furthermore, in-vivo serine protease inhibition significantly suppressed systemic inflammation, reduced fasting glucose level, and improved insulin resistance, and these effects probably mediated by modulating insulin receptor and cytokine expression in visceral adipose tissue. Our findings support the serine protease may play an important role in type 2 diabetes and suggest a rationale for a therapeutic strategy targeting serine protease for clinical prevention of type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Serina Proteasas/metabolismo , Inhibidores de Serina Proteinasa/uso terapéutico , Adulto , Anciano , Animales , Estudios Transversales , Citocinas/sangre , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Femenino , Humanos , Inflamación , Mediadores de Inflamación/sangre , Resistencia a la Insulina , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Receptores de LDL/genética
11.
J Am Coll Nutr ; 38(6): 485-492, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30964398

RESUMEN

Objective: To examine resting and postprandial peripheral protease activity in healthy controls and individuals with type 2 diabetes mellitus (T2DM) and pre-T2DM. Methods: Individuals with T2DM or pre-T2DM and healthy controls (mean age 55.8 years) were studied before and for a span of 300 minutes following a single high-calorie McDonald's breakfast. Metalloproteases-2/-9 (MMP-2/-9), elastase, and trypsin activities were assessed in whole blood before and following the meal using a novel high-precision electrophoretic platform. Also assessed were circulating levels of inflammatory biomarkers and insulin receptor density on peripheral blood mononuclear cells (PBMCs) in relationship to protease activity. Results: Premeal MMP-2/-9 and elastase activity levels in T2DM and in pre-T2DM participants were significantly elevated as compared to controls. The T2DM group showed a significant increase in elastase activity 15 minutes after the meal; elastase activity continued to increase to the 30-minute time point (p < 0.01). In control participants, MMP-2/-9, elastase, and trypsin were significantly increased at 15 minutes after the meal (p < 0.05) and returned to premeal values within a period of approximately 30 to 60 minutes post meal. PBMCs incubated for 1 hour with plasma from T2DM and pre-T2DM participants had significantly lower levels of insulin receptor density compared to those incubated with plasma from control participants (p < 0.001). Conclusions: The results of this study suggest that individuals with T2DM and pre-T2DM have higher resting systemic protease activity than nonsymptomatic controls. A single high-calorie/high-carbohydrate meal results in further elevations of protease activity in the systemic circulation of T2DM and pre-T2DM, as well as in healthy controls. The protease activity in turn can lead to a downregulation of insulin receptor density, potentially supporting a state of insulin resistance.


Asunto(s)
Diabetes Mellitus Tipo 2 , Péptido Hidrolasas/sangre , Periodo Posprandial/fisiología , Receptor de Insulina , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Receptor de Insulina/sangre , Receptor de Insulina/metabolismo , Descanso/fisiología
12.
Microcirculation ; 26(6): e12548, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30946505

RESUMEN

OBJECTIVE: The mechanisms underlying cell and organ dysfunctions in hypertension are uncertain. The spontaneously hypertensive rat (SHR) has elevated levels of unchecked degrading proteases compared to the control Wistar Kyoto (WKY) rat. The extracellular proteases destroy membrane receptors leading to cell dysfunctions, including arteriolar constriction and elevated blood pressure. Our goal was to identify potential sources of the uncontrolled enzymatic activity. METHODS: Zymographic and digital immunohistochemical measurements in SHR pancreas and intestine were obtained as part of the digestive system with high levels of degrading enzymes. OBJECTIVE: The results showed that SHRs have significantly higher protease activity than WKY in pancreas (22.04 ± 9.01 vs 13.02 ± 3.92 casein fluorescence intensity unit; P < 0.05) and pancreatic venules (0.011 ± 0.003 vs 0.005 ± 0.003 trypsin absorbance; P < 0.05) as well as in venous blood (71.07 ± 13.92 vs 36.44 ± 16.59 casein fluorescence intensity unit; P < 0.05). The enzymatic activity is contributed by trypsin and chymotrypsin. Furthermore, a decrease of these enzyme activity levels achieved during a short-term fasting period is associated with a reduction in systolic blood pressurein SHR (135 ± 8 mm Hg vs 124 ± 7 mm Hg; P < 0.05). CONCLUSIONS: The results suggest the pancreas of the SHR is a potential source for serine proteases leaking into the circulation and contributing to its protease activity.


Asunto(s)
Restricción Calórica , Quimotripsina/metabolismo , Hipertensión/epidemiología , Páncreas/enzimología , Tripsina/metabolismo , Animales , Hipertensión/patología , Masculino , Páncreas/patología , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY
13.
Sci Transl Med ; 10(455)2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-30135249

RESUMEN

Obesity and related morbidities pose a major health threat. Obesity is associated with increased blood concentrations of the anorexigenic hormone leptin; however, obese individuals are resistant to its anorexigenic effects. We examined the phenomenon of reduced leptin signaling in a high-fat diet-induced obesity model in mice. Obesity promoted matrix metalloproteinase-2 (Mmp-2) activation in the hypothalamus, which cleaved the leptin receptor's extracellular domain and impaired leptin-mediated signaling. Deletion of Mmp-2 restored leptin receptor expression and reduced circulating leptin concentrations in obese mice. Lentiviral delivery of short hairpin RNA to silence Mmp-2 in the hypothalamus of wild-type mice prevented leptin receptor cleavage and reduced fat accumulation. In contrast, lentiviral delivery of Mmp-2 in the hypothalamus of Mmp-2-/- mice promoted leptin receptor cleavage and higher body weight. In a genetic mouse model of obesity, transduction of cleavage-resistant leptin receptor in the hypothalamus reduced the rate of weight gain compared to uninfected mice or mice infected with the wild-type receptor. Immunofluorescence analysis showed that astrocytes and agouti-related peptide neurons were responsible for Mmp-2 secretion in mice fed a high-fat diet. These results suggest a mechanism for leptin resistance through activation of Mmp-2 and subsequent cleavage of the extracellular domain of the leptin receptor.


Asunto(s)
Leptina/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Obesidad/metabolismo , Receptores de Leptina/metabolismo , Animales , Encéfalo/enzimología , Dieta Alta en Grasa , Activación Enzimática , Hipotálamo/metabolismo , Leptina/sangre , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Ratas Wistar , Transducción de Señal , Aumento de Peso
14.
Hypertens Res ; 41(6): 406-413, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29556095

RESUMEN

Increased protease activity causes receptor dysfunction due to extracellular cleavage of different membrane receptors in hypertension. The vasodilatory effects of insulin-like growth factor-1 (IGF-1) are decreased in hypertension. Therefore, in the present study the association of an enhanced protease activity and IGF-1 receptor cleavage was investigated using the spontaneously hypertensive rats (SHRs) and their normotensive Wistar Kyoto (WKY) controls (n = 4). Matrix metalloproteinase (MMP) activities were determined using gelatin zymography on plasma and different tissue samples. WKY aorta rings were incubated in WKY or SHR plasma with or without MMP inhibitors, and immunohistochemistry was used to quantify the densities of the alpha and beta IGF-1 receptor (IGF-1R) subunits and to determine receptor cleavage. The pAkt and peNOS levels in the aorta were investigated using immunoblotting as a measure of IGF-IR function. Increased MMP-2 and MMP-9 activities were detected in plasma and peripheral tissues of SHRs. IGF-1R beta labeling was similar in both groups without plasma incubation, but the fraction of immunolabeled area for IGF-1R alpha was lower in the endothelial layer of the SHR aorta (p < 0.05). A 24-h incubation of WKY aorta with SHR plasma did not affect the IGF-1R beta labeling density, but reduced the IGF-1R alpha labeling density in the endothelium (p < 0.05). MMP inhibitors prevented this decrease (p < 0.01). Western blot analyses revealed that the pAkt and peNOS levels under IGF-1-stimulated and -unstimulated conditions were lower in SHRs (p < 0.05). A reduced IGF-1 cellular response in the aorta was associated with the decrease in the IGF-1R alpha subunit in the SHR hypertension model. Our results indicate that MMP-dependent receptor cleavage contributed to the reduced IGF-1 response in SHRs.


Asunto(s)
Hipertensión/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Receptor IGF Tipo 1/metabolismo , Animales , Masculino , Ratas Endogámicas SHR , Ratas Endogámicas WKY
15.
Shock ; 48(5): 571-575, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28498300

RESUMEN

There is a need to develop markers for early detection of organ failure in shock that can be noninvasively measured at point of care. We explore here the use of volatile organic compounds (VOCs) in expired air in a rat peritonitis shock model. Expired breath samples were collected into Tedlar gas bags and analyzed by standardized gas chromatography. The gas chromatograms were digitally analyzed for presence of peak amounts over a range of Kovach indices. Following the induction of peritonitis, selected volatile compounds were detected within about 1 h, which remained at elevated amounts over a 6 h observation period. These VOCs were not present in control animals without peritonitis. Comparisons with know VOCs indicate that they include 1,4-diaminobutane and trimethylamine N-oxide. When pancreatic digestive proteases were blocked with tranexamic acid in the intestine and peritoneum, a procedure that serves to reduce organ failure in shock, the amounts of VOCs in the breath decreased spontaneously to control values without peritonitis. These results indicate that peritonitis shock is accompanied by development of volatile organic compounds that may be generated by digestive enzymes in the small intestine. VOCs may serve as indicators for detection of early forms of autodigestion by digestive proteases.


Asunto(s)
Péptido Hidrolasas/metabolismo , Peritonitis/metabolismo , Choque/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Animales , Cromatografía de Gases , Mucosa Intestinal/metabolismo , Metilaminas/metabolismo , Peritoneo/metabolismo , Putrescina/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Ácido Tranexámico/metabolismo
16.
Front Neurosci ; 11: 155, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28396623

RESUMEN

Growing interest in gut and digestive processes and their potential link to brain and peripheral based inflammation or biobehavioral phenotypes has led to an increasing number of basic and translational scientific reports focused on the role of gut microbiota within the context of neuropsychiatric disorders. However, the effect of dietary modification on specific gut metabolites, in association with immune, metabolic, and psychopathological functioning in schizophrenia spectrum disorders has not been well characterized. The short chain fatty acids (SCFA) acetate, butyrate, and propionate, major metabolites derived from fermentation of dietary fibers by gut microbes, interact with multiple immune and metabolic pathways. The specific pathways that SCFA are thought to target, are dysregulated in cardiovascular disease, type II diabetes, and systemic inflammation. Most notably, these disorders are consistently linked to an attenuated lifespan in schizophrenia. Although, unhealthy dietary intake patterns and increased prevalence of immune and metabolic dysfunction has been observed in people with schizophrenia; dietary interventions have not been well utilized to target immune or metabolic illness. Prior schizophrenia patient trials primarily focused on the effects of gluten free diets. Findings from these studies indicate that a diet avoiding gluten benefits a limited subset of patients, individuals with celiac disease or non-celiac gluten sensitivity. Therefore, alternative dietary and nutritional modifications such as high-fiber, Mediterranean style, diets that enrich the production of SCFA, while being associated with a minimal likelihood of adverse events, may improve immune and cardiovascular outcomes linked to premature mortality in schizophrenia. With a growing literature demonstrating that SCFA can cross the blood brain barrier and target key inflammatory and metabolic pathways, this article highlights enriching dietary intake for SCFA as a potential adjunctive therapy for people with schizophrenia.

17.
J Leukoc Biol ; 102(1): 117-126, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28389621

RESUMEN

There is compelling evidence that circulatory hemodynamics prevent neutrophil activation, including adhesion to microvessels, in the microcirculation. However, the underlying mechanism or mechanisms by which that mechanoregulation occurs remain unresolved. Here, we report evidence that exposure to fluid shear stress (FSS) promotes neutrophils to release cathepsin B (ctsB) and that this autocrine regulatory event is antiadhesive for neutrophils on endothelial surfaces through Mac1-selective regulation. We used a combined cell-engineering and immunocytochemistry approach to find that ctsB was capable of cleaving Mac1 integrins on neutrophils and demonstrated that this proteolysis alters their adhesive functions. Under no-flow conditions, ctsB enhanced neutrophil migration though a putative effect on pseudopod retraction rates. We also established a flow-based cell detachment assay to verify the role of ctsB in the control of neutrophil adhesion by fluid flow stimulation. Fluid flow promoted neutrophil detachment from platelet and endothelial layers that required ctsB, consistent with its fluid shear stress-induced release. Notably, compared with leukocytes from wild-type mice, those from ctsB-deficient (ctsB -/- ) mice exhibited an impaired CD18 cleavage response to FSS, significantly elevated baseline levels of CD18 surface expression, and an enhanced adhesive capacity to mildly inflamed postcapillary venules. Taken together, the results of the present study support a role for ctsB in a hemodynamic control mechanism that is antiadhesive for leukocytes on endothelium. These results have implications in the pathogenesis of chronic inflammation, microvascular dysfunction, and cardiovascular diseases involving sustained neutrophil activation in the blood and microcirculation.


Asunto(s)
Catepsina B/inmunología , Antígeno de Macrófago-1/inmunología , Activación Neutrófila , Neutrófilos/inmunología , Resistencia al Corte , Animales , Catepsina B/genética , Adhesión Celular/genética , Adhesión Celular/inmunología , Movimiento Celular/genética , Movimiento Celular/inmunología , Femenino , Células HL-60 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Antígeno de Macrófago-1/genética , Masculino , Ratones , Ratones Noqueados
18.
J Trauma Acute Care Surg ; 83(2): 263-270, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28422915

RESUMEN

BACKGROUND: Irreversible hemorrhagic shock is characterized by hyporesponsiveness to vasopressor and fluid therapy. Little is known, however, about the mechanisms that contribute to this phenomenon. Previous studies have shown that decreased intestinal perfusion in hemorrhagic shock leads to proteolytically mediated increases in gut permeability, with subsequent egress of vasoactive substances systemically. Maintenance of blood pressure is achieved in part by α1 receptor modulation, which may be affected by vasoactive factors; we thus hypothesized that decreases in hemodynamic stability and vasopressor response in shock can be prevented by enteral protease inhibition. METHODS: Rats were exposed to experimental hemorrhagic shock (35 mm Hg mean arterial blood pressure for 2 hours, followed by reperfusion for 2 hours) and challenged with phenylephrine (2 µg/kg) at discrete intervals to measure vasopressor responsiveness. A second group of animals received enteral injections with the protease inhibitor tranexamic acid (TXA) (127 mM) along the small intestine and cecum 1 hour after induction of hemorrhagic shock. RESULTS: Blood pressure response (duration and amplitude) to phenylephrine after reperfusion was significantly attenuated in animals subjected to hemorrhagic shock compared with baseline and control nonshocked animals and was restored to near baseline by enteral TXA. Arteries from shocked animals also displayed decreased α1 receptor density with restoration to baseline after enteral TXA treatment. In vitro, rat shock plasma decreased α1 receptor density in smooth muscle cells, which was also abrogated by enteral TXA treatment. CONCLUSION: Results from this study demonstrate that experimental hemorrhagic shock leads to decreased response to the α1-selective agonist phenylephrine and decreased α1 receptor density via circulating shock factors. These changes are mitigated by enteral TXA with correspondingly improved hemodynamics. Proteolytic inhibition in the lumen of the small intestine improves hemodynamics in hemorrhagic shock, possibly by restoring α1 adrenergic functionality necessary to maintain systemic blood pressure and perfusion.


Asunto(s)
Modelos Animales de Enfermedad , Resistencia a Medicamentos , Fluidoterapia , Receptores Adrenérgicos alfa 1/efectos de los fármacos , Receptores Adrenérgicos alfa 1/metabolismo , Choque Hemorrágico/fisiopatología , Choque Hemorrágico/terapia , Ácido Tranexámico/farmacología , Vasoconstrictores/farmacología , Animales , Presión Sanguínea/efectos de los fármacos , Hemodinámica/efectos de los fármacos , Inyecciones , Intestino Delgado/efectos de los fármacos , Masculino , Fenilefrina/farmacología , Ratas , Ratas Wistar
19.
Hum Mol Genet ; 26(1): 233-242, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28011710

RESUMEN

Chromogranins are pro-hormone secretory proteins released from neuroendocrine cells, with effects on control of blood pressure. We conducted a genome-wide association study for plasma catestatin, the catecholamine release inhibitory peptide derived from chromogranin A (CHGA), and other CHGA- or chromogranin B (CHGB)-related peptides, in 545 US and 1252 Australian subjects. This identified loci on chromosomes 4q35 and 5q34 affecting catestatin concentration (P = 3.40 × 10-30 for rs4253311 and 1.85 × 10-19 for rs2731672, respectively). Genes in these regions include the proteolytic enzymes kallikrein (KLKB1) and Factor XII (F12). In chromaffin cells, CHGA and KLKB1 proteins co-localized in catecholamine storage granules. In vitro, kallikrein cleaved recombinant human CHGA to catestatin, verified by mass spectrometry. The peptide identified from this digestion (CHGA360-373) selectively inhibited nicotinic cholinergic stimulated catecholamine release from chromaffin cells. A proteolytic cascade involving kallikrein and Factor XII cleaves chromogranins to active compounds both in vivo and in vitro.


Asunto(s)
Biomarcadores/metabolismo , Catecolaminas/metabolismo , Células Cromafines/metabolismo , Cromogranina A/sangre , Sitios Genéticos/genética , Hipertensión/genética , Fragmentos de Péptidos/sangre , Adolescente , Glándulas Suprarrenales/metabolismo , Adulto , Anciano , Animales , Australia , Biomarcadores/análisis , Células Cultivadas , Factor XII/genética , Factor XII/metabolismo , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Hipertensión/sangre , Calicreínas/genética , Calicreínas/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Ratas , Estados Unidos , Adulto Joven
20.
J Clin Monit Comput ; 31(1): 167-175, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26686691

RESUMEN

The nature of hemodynamic instability typical of circulatory shock is not well understood, but an improved interpretation of its dynamic features could help in the management of critically ill patients. The objective of this work was to introduce new metrics for the analysis of arterial blood pressure (ABP) in order to characterize the risk of catastrophic outcome in splanchnic arterial occlusion (SAO) shock. Continuous ABP (fs = 1 kHz) was measured in rats during experimental SAO shock, which induced a fatal pressure drop (FPD) in ABP. The FPD could either be slow (SFPD) or fast (FFPD), with the latter causing cardiovascular collapse. Time series of mean arterial pressure, systolic blood pressure and heart period were derived from ABP. The sample asymmetry-based algorithm Heart Rate Characteristics was adapted to compute the Heart Period Characteristics (HPC) and the Blood Pressure Characteristics (BPC). Baroreflex sensitivity (BRS) was assessed by means of a bivariate model. The approach to FPD of the animals who collapsed (FFPD) was characterized by higher BRS in the low frequency band versus SFPD animals (0.36 ± 0.15 vs. 0.19 ± 0.12 ms/mmHg, p value = 0.0196), bradycardia as indicated by the HPC (0.76 ± 0.57 vs. 1.94 ± 1.27, p value = 0.0179) and higher but unstable blood pressure as indicated by BPC (3.02 ± 2.87 vs. 1.47 ± 1.29, p value = 0.0773). The HPC and BPC indices demonstrated promise as potential clinical markers of hemodynamic instability and impending cardiovascular collapse, and this animal study suggests their test in data from intensive care patients.


Asunto(s)
Determinación de la Presión Sanguínea , Presión Sanguínea , Choque/fisiopatología , Circulación Esplácnica , Algoritmos , Animales , Barorreflejo , Enfermedades Cardiovasculares/fisiopatología , Cuidados Críticos , Corazón/fisiopatología , Frecuencia Cardíaca , Hemodinámica , Humanos , Unidades de Cuidados Intensivos , Masculino , Modelos Estadísticos , Ratas , Ratas Wistar , Riesgo , Factores de Tiempo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...