Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Conserv Biol ; : e14165, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38711380

RESUMEN

The success of ponds constructed to restore ecological infrastructure for pond-breeding amphibians and benefit aquatic biodiversity depends on where and how they are built. We studied effects of pond and landscape characteristics, including connectivity, on metapopulation dynamics of 12 amphibian species in Switzerland. To understand the determinants of long-term occupancy (here summarized as incidence), environmental effects on both colonization and persistence should be considered. We fitted dynamic occupancy models to 20 years of monitoring data on a pond construction program to quantify effects of pond and landscape characteristics and different connectivity metrics on colonization and persistence probabilities in constructed ponds. Connectivity to existing populations explained dynamics better than structural connectivity metrics, and simple metrics (distance to the nearest neighbor population, population density) were useful surrogates for dispersal kernel-weighted metrics commonly used in metapopulation theory. Population connectivity mediated the persistence of conservation target species in new ponds, suggesting source-sink dynamics in newly established populations. Population density captured this effect well and could be used by practitioners for site selection. Ponds created where there were 2-4 occupied ponds within a radius of ∼0.5 km had >3.5 times higher incidence of target species (median) than isolated ponds. Species had individual preferences regarding pond characteristics, but breeding sites with larger (≥100 m2) total water surface area, that temporarily dried, and that were in surroundings with maximally 50% forest benefitted multiple target species. Pond diversity will foster amphibian diversity at the landscape scale.


Construcción de estanques para meta poblaciones de anfibios Resumen El éxito de los estanques construidos para restaurar la infraestructura ecológica para los anfibios que allí se reproducen y para beneficiar la biodiversidad acuática depende de en dónde y cómo se construyen. Estudiamos los efectos de las características de los estanques y el paisaje, incluida la conectividad, sobre la dinámica de las meta poblaciones de 12 especies de anfibios en Suiza. Se deben considerar los efectos ambientales sobre la colonización y la persistencia para entender las determinantes de la ocupación a largo plazo (resumida aquí como incidencia). Ajustamos los modelos dinámicos de ocupación a datos de 20 años de monitoreo de un programa de construcción de estanques para cuantificar los efectos de las características del estanque y el paisaje y las diferentes medidas de conectividad para las probabilidades de colonización y persistencia en los estanques construidos. La conectividad con las poblaciones existentes explicó mejor la dinámica que las medidas de conectividad estructural, mientras que las medidas simples (distancia a la población vecina más cercana, densidad poblacional) fueron sustitutos útiles para las medidas de dispersión ponderadas al núcleo que se usan con frecuencia en la teoría de meta poblaciones. La conectividad poblacional medió la persistencia de las especies a conservar en los estanques nuevos, lo que sugiere que hay dinámicas fuente­sumidero en las poblaciones recién establecidas. La densidad poblacional capturó muy bien este efecto y podría usarse para que los practicantes seleccionen sitios. Los estanques construidos en un radio de ≈0.5 km de dos a cuatro estanques ocupados tuvieron >3.5 más incidencia de las especies a conservar (mediana) que los estanques aislados. Las especies tuvieron preferencias individuales con respecto a las características de los estanques, aunque los sitios de reproducción con una mayor superficie total de agua (≥100 m2), que se secaban temporalmente y que estaban rodeados con un máximo de 50% de bosque beneficiaron a muchas especies a conservar. Por esto, la diversidad de estanques promoverá la diversidad de anfibios a escala de paisaje.

2.
Proc Biol Sci ; 290(2007): 20230510, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37752840

RESUMEN

Understanding wildlife responses to novel threats is vital in counteracting biodiversity loss. The emerging pathogen Batrachochytrium salamandrivorans (Bsal) causes dramatic declines in European salamander populations, and is considered an imminent threat to global amphibian biodiversity. However, real-life disease outcomes remain largely uncharacterized. We performed a multidisciplinary assessment of the longer-term impacts of Bsal on highly susceptible fire salamander (Salamandra salamandra) populations, by comparing four of the earliest known outbreak sites to uninfected sites. Based on large-scale monitoring efforts, we found population persistence in strongly reduced abundances to over a decade after Bsal invasion, but also the extinction of an initially small-sized population. In turn, we found that host responses varied, and Bsal detection remained low, within surviving populations. Demographic analyses indicated an ongoing scarcity of large reproductive adults with potential for recruitment failure, while spatial comparisons indicated a population remnant persisting within aberrant habitat. Additionally, we detected no early signs of severe genetic deterioration, yet nor of increased host resistance. Beyond offering additional context to Bsal-driven salamander declines, results highlight how the impacts of emerging hypervirulent pathogens can be unpredictable and vary across different levels of biological complexity, and how limited pathogen detectability after population declines may complicate surveillance efforts.


Asunto(s)
Quitridiomicetos , Urodelos , Animales , Quitridiomicetos/fisiología , Batrachochytrium , Anfibios
3.
Proc Natl Acad Sci U S A ; 119(42): e2123070119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36215493

RESUMEN

Success stories are rare in conservation science, hindered also by the research-implementation gap, where scientific insights rarely inform practice and practical implementation is rarely evaluated scientifically. Amphibian population declines, driven by multiple stressors, are emblematic of the freshwater biodiversity crisis. Habitat creation is a straightforward conservation action that has been shown to locally benefit amphibians, as well as other taxa, but does it benefit entire amphibian communities at large spatial scales? Here, we evaluate a landscape-scale pond-construction program by fitting dynamic occupancy models to 20 y of monitoring data for 12 pond-breeding amphibian species in the Swiss state Aargau, a densely populated area of the Swiss lowlands with intensive land use. After decades of population declines, the number of occupied ponds increased statewide for 10 out of 12 species, while one species remained stable and one species further declined between 1999 and 2019. Despite regional differences, in 77% of all 43 regional metapopulations, the colonization and subsequent occupation of new ponds stabilized (14%) or increased (63%) metapopulation size. Likely mechanisms include increased habitat availability, restoration of habitat dynamics, and increased connectivity between ponds. Colonization probabilities reflected species-specific preferences for characteristics of ponds and their surroundings, which provides evidence-based information for future pond construction targeting specific species. The relatively simple but landscape-scale and persistent conservation action of constructing hundreds of new ponds halted declines and stabilized or increased the state-wide population size of all but one species, despite ongoing pressures from other stressors in a human-dominated landscape.


Asunto(s)
Anfibios , Biodiversidad , Animales , Conservación de los Recursos Naturales , Ecosistema , Humanos , Estanques , Especificidad de la Especie
4.
Proc Natl Acad Sci U S A ; 119(38): e2206805119, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36095177

RESUMEN

Habitat anthropization is a major driver of global biodiversity decline. Although most species are negatively affected, some benefit from anthropogenic habitat modifications by showing intriguing life-history responses. For instance, increased recruitment through higher allocation to reproduction or improved performance during early-life stages could compensate for reduced adult survival, corresponding to "compensatory recruitment". To date, evidence of compensatory recruitment in response to habitat modification is restricted to plants, limiting understanding of its importance as a response to global change. We used the yellow-bellied toad (Bombina variegata), an amphibian occupying a broad range of natural and anthropogenic habitats, as a model species to test for and to quantify compensatory recruitment. Using an exceptional capture-recapture dataset composed of 21,714 individuals from 67 populations across Europe, we showed that adult survival was lower, lifespan was shorter, and actuarial senescence was higher in anthropogenic habitats, especially those affected by intense human activities. Increased recruitment in anthropogenic habitats fully offset reductions in adult survival, with the consequence that population growth rate in both habitat types was similar. Our findings indicate that compensatory recruitment allows toad populations to remain viable in human-dominated habitats and might facilitate the persistence of other animal populations in such environments.


Asunto(s)
Efectos Antropogénicos , Anuros , Biodiversidad , Animales , Europa (Continente) , Dinámica Poblacional
5.
Science ; 376(6600): 1459-1466, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35737773

RESUMEN

Comparative studies of mortality in the wild are necessary to understand the evolution of aging; yet, ectothermic tetrapods are underrepresented in this comparative landscape, despite their suitability for testing evolutionary hypotheses. We present a study of aging rates and longevity across wild tetrapod ectotherms, using data from 107 populations (77 species) of nonavian reptiles and amphibians. We test hypotheses of how thermoregulatory mode, environmental temperature, protective phenotypes, and pace of life history contribute to demographic aging. Controlling for phylogeny and body size, ectotherms display a higher diversity of aging rates compared with endotherms and include phylogenetically widespread evidence of negligible aging. Protective phenotypes and life-history strategies further explain macroevolutionary patterns of aging. Analyzing ectothermic tetrapods in a comparative context enhances our understanding of the evolution of aging.


Asunto(s)
Envejecimiento , Anfibios , Evolución Biológica , Reptiles , Anfibios/clasificación , Anfibios/fisiología , Animales , Longevidad , Filogenia , Reptiles/clasificación , Reptiles/fisiología
6.
J Anim Ecol ; 91(2): 308-319, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34704260

RESUMEN

Compensatory recruitment is a key demographic mechanism that has allowed the coexistence of populations of susceptible amphibians with Batrachochytrium dendrobatidis (Bd), a fungus causing one of the most devastating emerging infectious disease ever recorded among vertebrates. However, the underlying processes (e.g. density-dependent increase in survival at early life stages, change in reproductive traits) as well as the level of interpopulation variation in this response are poorly known. We explore potential mechanisms of compensatory recruitment in response to Bd infection by taking advantage of an amphibian system where male reproductive traits are easy to quantify in free-living populations. The Southern Darwin's frog Rhinoderma darwinii is a vocal sac-brooding species that exhibits a high susceptibility to lethal Bd infection. Using a 7-year capture-recapture study at four populations with contrasting Bd infection status (one high prevalence, one low prevalence and two Bd-free populations), we evaluated whether Bd-positive populations exhibited a higher adult recruitment and a higher male reproductive effort than Bd-negative populations. We also estimated population growth rates to explore whether recruitment compensated for the negative impacts of Bd on the survival of adults. In addition, we evaluated a potential demographic signal of compensatory recruitment (i.e. positive relationship between the proportion of juveniles and Bd prevalence) in response to Bd infection using raw count data from 13 R. darwinii populations. The high Bd prevalence population exhibited the highest male reproductive effort and the highest recruitment among the four monitored populations. This led to a growing population during the study period despite high mortality of adult hosts. In contrast, males from the population with low Bd prevalence had a low reproductive effort and this population, which had the lowest adult recruitment, was declining during the study period despite adults having a higher survival in comparison to the high Bd prevalence population. We also found a demographic signal of compensatory recruitment in response to Bd infection in our broader analysis of 13 R. darwinii populations. Our study underlines the importance of interpopulation variation in life-history strategies on the fate of host populations after infectious disease emergence. Our results also suggest that an increase in reproductive effort can be one of the processes underlying compensatory recruitment in populations of Bd-susceptible amphibians.


Asunto(s)
Quitridiomicetos , Micosis , Anfibios/microbiología , Animales , Anuros/microbiología , Quitridiomicetos/fisiología , Masculino , Micosis/epidemiología , Micosis/microbiología , Micosis/veterinaria , Dinámica Poblacional , Reproducción
7.
Evolution ; 76(2): 346-356, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34878663

RESUMEN

Sex-related differences in mortality are widespread in the animal kingdom. Although studies have shown that sex determination systems might drive lifespan evolution, sex chromosome influence on aging rates have not been investigated so far, likely due to an apparent lack of demographic data from clades including both XY (with heterogametic males) and ZW (heterogametic females) systems. Taking advantage of a unique collection of capture-recapture datasets in amphibians, a vertebrate group where XY and ZW systems have repeatedly evolved over the past 200 million years, we examined whether sex heterogamy can predict sex differences in aging rates and lifespans. We showed that the strength and direction of sex differences in aging rates (and not lifespan) differ between XY and ZW systems. Sex-specific variation in aging rates was moderate within each system, but aging rates tended to be consistently higher in the heterogametic sex. This led to small but detectable effects of sex chromosome system on sex differences in aging rates in our models. Although preliminary, our results suggest that exposed recessive deleterious mutations on the X/Z chromosome (the "unguarded X/Z effect") or repeat-rich Y/W chromosome (the "toxic Y/W effect") could accelerate aging in the heterogametic sex in some vertebrate clades.


Asunto(s)
Caracteres Sexuales , Cromosomas Sexuales , Envejecimiento/genética , Anfibios/genética , Animales , Femenino , Masculino , Procesos de Determinación del Sexo , Cromosoma Y
8.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34845023

RESUMEN

Variation in temperature is known to influence mortality patterns in ectotherms. Even though a few experimental studies on model organisms have reported a positive relationship between temperature and actuarial senescence (i.e., the increase in mortality risk with age), how variation in climate influences the senescence rate across the range of a species is still poorly understood in free-ranging animals. We filled this knowledge gap by investigating the relationships linking senescence rate, adult lifespan, and climatic conditions using long-term capture-recapture data from multiple amphibian populations. We considered two pairs of related anuran species from the Ranidae (Rana luteiventris and Rana temporaria) and Bufonidae (Anaxyrus boreas and Bufo bufo) families, which diverged more than 100 Mya and are broadly distributed in North America and Europe. Senescence rates were positively associated with mean annual temperature in all species. In addition, lifespan was negatively correlated with mean annual temperature in all species except A. boreas In both R. luteiventris and A. boreas, mean annual precipitation and human environmental footprint both had negligible effects on senescence rates or lifespans. Overall, our findings demonstrate the critical influence of thermal conditions on mortality patterns across anuran species from temperate regions. In the current context of further global temperature increases predicted by Intergovernmental Panel on Climate Change scenarios, a widespread acceleration of aging in amphibians is expected to occur in the decades to come, which might threaten even more seriously the viability of populations and exacerbate global decline.


Asunto(s)
Envejecimiento/metabolismo , Anuros/metabolismo , Envejecimiento/fisiología , Animales , Biodiversidad , Bufonidae/metabolismo , Cambio Climático/mortalidad , Europa (Continente) , Calentamiento Global/mortalidad , América del Norte , Ranidae/metabolismo , Temperatura
9.
Mol Ecol ; 30(20): 5009-5028, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34490661

RESUMEN

Dispersal is a central process in ecology and evolution with far reaching consequences for the dynamics and genetics of spatially structured populations (SSPs). Individuals can adjust their decisions to disperse according to local fitness prospects, resulting in context-dependent dispersal. By determining dispersal rate, distance and direction, these individual-level decisions further modulate the demography, relatedness and genetic structure of SSPs. Here, we examined how context-dependent dispersal influences the dynamics and genetics of a great crested newt (Triturus cristatus) SSP. We collected capture-recapture data of 5564 individuals and genetic data of 950 individuals across an SSP in northern Germany. We added genetic data from six sites outside this SSP to assess genetic structure and gene flow at a regional level. Dispersal rates within the SSP were high but dispersal distances were short. Dispersal was context-dependent: individuals preferentially immigrated into high-quality ponds where breeding probabilities were higher. The studied SSP behaved like a patchy population, where subpopulations at each pond were demographically interdependent. High context-dependent dispersal led to weak but significant spatial genetic structure and relatedness within the SSP. At the regional level, a strong hierarchical genetic structure with very few first-generation migrants as well as low effective dispersal rates suggest the presence of independent demographic units. Overall, our study highlights the importance of habitat quality for driving context-dependent dispersal and therefore demography and genetic structure in SSPs. Limited capacity for long-distance dispersal seems to increase genetic structure within a population and leads to demographic isolation in anthropogenic landscapes.


Asunto(s)
Anfibios , Ecología , Animales , Ecosistema , Humanos , Repeticiones de Microsatélite/genética , Densidad de Población , Dinámica Poblacional
10.
Ecol Appl ; 31(6): e02357, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33870588

RESUMEN

Monitoring programs serve to detect trends in the distribution and abundance of species. To do so, monitoring programs often use static state variables. Dynamic state variables that describe population dynamics might be more valuable because they allow for a mechanistic understanding of the processes that lead to population trends. We fit multistate occupancy models to data from a country-wide multispecies amphibian occupancy monitoring program and estimated occupancy and breeding probabilities. If breeding probabilities are determinants of occupancy dynamics, then they may serve in monitoring programs as state variables that describe dynamic processes. The results showed that breeding probabilities were low and that a large proportion of the populations had to be considered to be non-breeding populations (i.e., populations where adults are present but no breeding occurs). For some species, the majority of populations were non-breeding populations. We found that non-breeding populations have lower persistence probabilities than populations where breeding occurs. Breeding probabilities may thus explain trends in occupancy but they might also explain other ecological phenomena, such as the success of invasive species, which had high breeding probabilities. Signs of breeding, i.e., the presence of eggs and larvae, were often hard to detect. Importantly, non-breeding populations also had low detection probabilities, perhaps because they had lower abundances. We suggest that monitoring programs should invest more in the detection of life history stages indicative of breeding, and also into the detection of non-breeding populations. We conclude that breeding probability should be used as a state variable in monitoring programs because it can lead to deeper insights into the processes driving occupancy dynamics.


Asunto(s)
Anfibios , Ecosistema , Animales , Especies Introducidas , Dinámica Poblacional , Probabilidad
11.
Biol Rev Camb Philos Soc ; 96(5): 1816-1835, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33908168

RESUMEN

Mountain areas are biodiversity hotspots and provide a multitude of ecosystem services of irreplaceable socio-economic value. In the European Alps, air temperature has increased at a rate of about 0.36°C decade-1 since 1970, leading to glacier retreat and significant snowpack reduction. Due to these rapid environmental changes, this mountainous region is undergoing marked changes in spring phenology and elevational distribution of animals, plants and fungi. Long-term monitoring in the European Alps offers an excellent natural laboratory to synthetize climate-related changes in spring phenology and elevational distribution for a large array of taxonomic groups. This review assesses the climatic changes that have occurred across the European Alps during recent decades, spring phenological changes and upslope shifts of plants, animals and fungi from evidence in published papers and previously unpublished data. Our review provides evidence that spring phenology has been shifting earlier during the past four decades and distribution ranges show an upwards trend for most of the taxonomic groups for which there are sufficient data. The first observed activity of reptiles and terrestrial insects (e.g. butterflies) in spring has shifted significantly earlier, at an average rate of -5.7 and -6.0 days decade-1 , respectively. By contrast, the first observed spring activity of semi-aquatic insects (e.g. dragonflies and damselflies) and amphibians, as well as the singing activity or laying dates of resident birds, show smaller non-significant trends ranging from -1.0 to +1.3 days decade-1 . Leaf-out and flowering of woody and herbaceous plants showed intermediate trends with mean values of -2.4 and -2.8 days decade-1 , respectively. Regarding species distribution, plants, animals and fungi (N = 2133 species) shifted the elevation of maximum abundance (optimum elevation) upslope at a similar pace (on average between +18 and +25 m decade-1 ) but with substantial differences among taxa. For example, the optimum elevation shifted upward by +36.2 m decade-1 for terrestrial insects and +32.7 m decade-1 for woody plants, whereas it was estimated to range between -1.0 and +11 m decade-1 for semi-aquatic insects, ferns, birds and wood-decaying fungi. The upper range limit (leading edge) of most species also shifted upslope with a rate clearly higher for animals (from +47 to +91 m decade-1 ) than for plants (from +17 to +40 m decade-1 ), except for semi-aquatic insects (-4.7 m decade-1 ). Although regional land-use changes could partly explain some trends, the consistent upward shift found in almost all taxa all over the Alps is likely reflecting the strong warming and the receding of snow cover that has taken place across the European Alps over recent decades. However, with the possible exception of terrestrial insects, the upward shift of organisms seems currently too slow to track the pace of isotherm shifts induced by climate warming, estimated at about +62 to +71 m decade-1 since 1970. In the light of these results, species interactions are likely to change over multiple trophic levels through phenological and spatial mismatches. This nascent research field deserves greater attention to allow us to anticipate structural and functional changes better at the ecosystem level.


Asunto(s)
Mariposas Diurnas , Odonata , Animales , Cambio Climático , Ecosistema , Hongos , Plantas , Estaciones del Año , Temperatura
12.
Ecol Lett ; 24(4): 876-890, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33492776

RESUMEN

When facing an emerging infectious disease of conservation concern, we often have little information on the nature of the host-parasite interaction to inform management decisions. However, it is becoming increasingly clear that the life-history strategies of host species can be predictive of individual- and population-level responses to infectious disease, even without detailed knowledge on the specifics of the host-parasite interaction. Here, we argue that a deeper integration of life-history theory into disease ecology is timely and necessary to improve our capacity to understand, predict and mitigate the impact of endemic and emerging infectious diseases in wild populations. Using wild vertebrates as an example, we show that host life-history characteristics influence host responses to parasitism at different levels of organisation, from individuals to communities. We also highlight knowledge gaps and future directions for the study of life-history and host responses to parasitism. We conclude by illustrating how this theoretical insight can inform the monitoring and control of infectious diseases in wildlife.


Asunto(s)
Ecología , Rasgos de la Historia de Vida , Animales , Animales Salvajes , Interacciones Huésped-Parásitos , Humanos , Vertebrados
13.
Proc Biol Sci ; 287(1939): 20202475, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33234080

RESUMEN

Emerging wildlife diseases are taking a heavy toll on animal and plant species worldwide. Mitigation, particularly in the initial epidemic phase, is hindered by uncertainty about the epidemiology and management of emerging diseases, but also by vague or poorly defined objectives. Here, we use a quantitative analysis to assess how the decision context of mitigation objectives, available strategies and practical constraints influences the decision of whether and how to respond to epidemics in wildlife. To illustrate our approach, we parametrized the model for European fire salamanders affected by Batrachochytrium salamandrivorans, and explored different combinations of conservation, containment and budgetary objectives. We found that in approximately half of those scenarios, host removal strategies perform equal to or worse than no management at all during a local outbreak, particularly where removal cannot exclusively target infected individuals. Moreover, the window for intervention shrinks rapidly if an outbreak is detected late or if a response is delayed. Clearly defining the decision context is, therefore, vital to plan meaningful responses to novel outbreaks. Explicitly stating objectives, strategies and constraints, if possible before an outbreak occurs, avoids wasting precious resources and creating false expectations about what can and cannot be achieved during the epidemic phase.


Asunto(s)
Enfermedades de los Animales/prevención & control , Brotes de Enfermedades/veterinaria , Enfermedades de los Animales/epidemiología , Animales , Animales Salvajes , Enfermedades Transmisibles , Conservación de los Recursos Naturales , Estudios de Factibilidad , Humanos , Incertidumbre
14.
Glob Chang Biol ; 26(12): 6715-6728, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32866994

RESUMEN

Assessing the degree to which climate explains the spatial distributions of different taxonomic and functional groups is essential for anticipating the effects of climate change on ecosystems. Most effort so far has focused on above-ground organisms, which offer only a partial view on the response of biodiversity to environmental gradients. Here including both above- and below-ground organisms, we quantified the degree of topoclimatic control on the occurrence patterns of >1,500 taxa and phylotypes along a c. 3,000 m elevation gradient, by fitting species distribution models. Higher model performances for animals and plants than for soil microbes (fungi, bacteria and protists) suggest that the direct influence of topoclimate is stronger on above-ground species than on below-ground microorganisms. Accordingly, direct climate change effects are predicted to be stronger for above-ground than for below-ground taxa, whereas factors expressing local soil microclimate and geochemistry are likely more important to explain and forecast the occurrence patterns of soil microbiota. Detailed mapping and future scenarios of soil microclimate and microhabitats, together with comparative studies of interacting and ecologically dependent above- and below-ground biota, are thus needed to understand and realistically forecast the future distribution of ecosystems.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Cambio Climático , Microclima , Suelo , Microbiología del Suelo
15.
J Anim Ecol ; 89(4): 1069-1079, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31943196

RESUMEN

Patterns of actuarial senescence can be highly variable among species. Previous comparative analyses revealed that both age at the onset of senescence and rates of senescence are linked to position of a species along the fast-slow life-history continuum. As there are few long-term datasets of wild populations with known-age individuals, intraspecific (i.e. between-population) variation in senescence is understudied and limited to comparisons of wild and captive populations of the same species, mostly birds and mammals. In this paper, we examined how population position along the fast-slow life-history continuum affects intraspecific variation in senescence in an amphibian, Bombina variegata. We used capture-recapture data collected in four populations with contrasting life-history strategies. Senescence trajectories were analysed using Bayesian capture-recapture models. We show that in populations with fast life histories the onset of actuarial senescence was earlier and individuals aged at a faster rate than individuals in populations with slow life histories. Our study provides one of the few empirical examples of among-population variation in actuarial senescence patterns in the wild and confirms that the fast-slow life-history gradient is associated with both macroevolutionary and microevolutionary patterns of actuarial senescence.


Asunto(s)
Rasgos de la Historia de Vida , Mamíferos , Animales , Anuros , Teorema de Bayes , Aves
16.
Proc Biol Sci ; 286(1909): 20191498, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31455192

RESUMEN

Actuarial senescence has been viewed for a long time as an inevitable and uniform process. However, the work on senescence has mainly focused on endotherms with deterministic growth and low regeneration capacity during the adult stage, leading to a strong taxonomic bias in the study of ageing. Recent studies have highlighted that senescence could indeed display highly variable trajectories that correlate with species life-history traits. Slow life histories and indeterminate growth seem to be associated with weak and late senescence. Furthermore, high regenerative abilities could lead to negligible senescence in ectotherms. However, demographic data for species that would allow testing of these hypotheses are scarce. Here, we investigated senescence patterns in 'true salamanders' from the western Palaearctic. Our results showed that salamanders have slow life histories and that they experience negligible senescence. This pattern was consistent at both intra- and interspecific levels, suggesting that the absence of senescence may be a phylogenetically conserved trait. The regenerative capacities of salamanders, in combination with other physiological and developmental features such as an indeterminate growth and a low metabolic rate, probably explain why these small ectotherms have lifespans similar to that of large endotherms and, in contrast with most amniotes, undergo negligible senescence. Our study seriously challenges the idea that senescence is a ubiquitous phenomenon in the tree of life.


Asunto(s)
Rasgos de la Historia de Vida , Urodelos/fisiología , Animales , Longevidad , Reproducción
17.
Ecol Lett ; 22(2): 342-353, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30536594

RESUMEN

The current extinction and climate change crises pressure us to predict population dynamics with ever-greater accuracy. Although predictions rest on the well-advanced theory of age-structured populations, two key issues remain poorly explored. Specifically, how the age-dependency in demographic rates and the year-to-year interactions between survival and fecundity affect stochastic population growth rates. We use inference, simulations and mathematical derivations to explore how environmental perturbations determine population growth rates for populations with different age-specific demographic rates and when ages are reduced to stages. We find that stage- vs. age-based models can produce markedly divergent stochastic population growth rates. The differences are most pronounced when there are survival-fecundity-trade-offs, which reduce the variance in the population growth rate. Finally, the expected value and variance of the stochastic growth rates of populations with different age-specific demographic rates can diverge to the extent that, while some populations may thrive, others will inevitably go extinct.


Asunto(s)
Aves , Cambio Climático , Extinción Biológica , Animales , Biodiversidad , Demografía , Femenino , Masculino , Modelos Biológicos , Dinámica Poblacional , Procesos Estocásticos
18.
J Anim Ecol ; 88(1): 164-177, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30280381

RESUMEN

Understanding the mechanisms that regulate the dynamics of spatially structured populations (SSP) is a critical challenge for ecologists and conservation managers. Internal population processes such as births and deaths occur at a local level, while external processes such as dispersal take place at an inter-population level. At both levels, density dependence is expected to play a critical role. At a patch scale, demographic traits (e.g., survival, breeding success) and the population growth rate can be influenced by density either negatively (e.g., competition effect) or positively (e.g., Allee effects). At the scale of an SSP, although positive density-dependent dispersal has been widely reported, an increasing number of studies have highlighted negative density-dependent dispersal. While many studies have investigated the effects of density on population growth or on dispersal, few have simultaneously examined density-dependent effects at the scale of both the local population and the entire SSP. In this study, we examine how density is related to demographic processes at both the pond level (survival and population growth) and the SSP level (between-pond dispersal) in a pond-breeding amphibian, the great crested newt (Triturus cristatus). The study was based on 20 years of individual capture-recapture (CR) data (from 1996 to 2015) gathered from an SSP made up of 12 experimental ponds ("patches"). We first used a CR multievent model to estimate both survival and dispersal rates in specific ponds as a function of distance between ponds. Then, using a second CR multievent model, we examined whether survival and recapture rates were influenced by population density in a pond. Lastly, we used state-space time series models to investigate whether density affected population growth in each pond. Our results found a positive density-dependent effect on survival and a negative density-dependent effect on departure. In addition, the findings indicate that population growth was negatively related to density in all 12 ponds. These results support the hypothesis that in SSPs, density may have multiple and contrasting effects on demographic parameters and growth rates within local populations as well as on dispersal. This study underlines the need to better understand how density dependence may influence potential trade-offs between life-history strategies and life-history stages.


Asunto(s)
Estanques , Crecimiento Demográfico , Anfibios , Animales , Densidad de Población , Dinámica Poblacional
19.
Sci Rep ; 8(1): 14737, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30283010

RESUMEN

Here we report the discovery and partial characterization of a novel herpesvirus tentatively named Bufonid herpesvirus 1 (BfHV1) from severe dermatitis in free ranging common toads (Bufo bufo) in Switzerland. The disease has been observed in toads every year since 2014, in spring, during the mating season, at different and distant locations. The virus is found in the skin and occasionally in the brain of infected toads. The genome of the virus is at least 158 Kb long and contains at least 152 open reading frames with a minimal length of 270 nt. The genome of BfHV1 contains all the signature genes that are present in alloherpesviruses. Phylogenetic analysis based on the amino acid sequence of the DNA polymerase and terminase proteins positions the novel virus among the members of the genus Batrachovirus, family Alloherpesviridae. This is the first herpesvirus ever characterized in common toads.


Asunto(s)
Bufo bufo/virología , Virus ADN/genética , Dermatitis/virología , Herpesviridae/genética , Secuencia de Aminoácidos/genética , Animales , Dermatitis/patología , Dermatitis/veterinaria , Genoma Viral/genética , Herpesviridae/patogenicidad , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/patogenicidad , Humanos , Filogenia , Suiza
20.
Nat Commun ; 9(1): 3926, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30254220

RESUMEN

Changing climate will impact species' ranges only when environmental variability directly impacts the demography of local populations. However, measurement of demographic responses to climate change has largely been limited to single species and locations. Here we show that amphibian communities are responsive to climatic variability, using >500,000 time-series observations for 81 species across 86 North American study areas. The effect of climate on local colonization and persistence probabilities varies among eco-regions and depends on local climate, species life-histories, and taxonomic classification. We found that local species richness is most sensitive to changes in water availability during breeding and changes in winter conditions. Based on the relationships we measure, recent changes in climate cannot explain why local species richness of North American amphibians has rapidly declined. However, changing climate does explain why some populations are declining faster than others. Our results provide important insights into how amphibians respond to climate and a general framework for measuring climate impacts on species richness.


Asunto(s)
Anfibios/fisiología , Cambio Climático , Clima , Ecosistema , Algoritmos , Anfibios/clasificación , Distribución Animal , Animales , Geografía , Modelos Teóricos , América del Norte , Dinámica Poblacional , Estaciones del Año , Especificidad de la Especie , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...