Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(17): 173001, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37172243

RESUMEN

To test bound-state quantum electrodynamics (BSQED) in the strong-field regime, we have performed high precision x-ray spectroscopy of the 5g-4f and 5f- 4d transitions (BSQED contribution of 2.4 and 5.2 eV, respectively) of muonic neon atoms in the low-pressure gas phase without bound electrons. Muonic atoms have been recently proposed as an alternative to few-electron high-Z ions for BSQED tests by focusing on circular Rydberg states where nuclear contributions are negligibly small. We determined the 5g_{9/2}- 4f_{7/2} transition energy to be 6297.08±0.04(stat)±0.13(syst) eV using superconducting transition-edge sensor microcalorimeters (5.2-5.5 eV FWHM resolution), which agrees well with the most advanced BSQED theoretical prediction of 6297.26 eV.

2.
Metrologia ; 58(1)2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34354301

RESUMEN

We use an array of transition-edge sensors, cryogenic microcalorimeters with 4 eV energy resolution, to measure L x-ray emission-line profiles of four elements of the lanthanide series: praseodymium, neodymium, terbium, and holmium. The spectrometer also surveys numerous x-ray standards in order to establish an absolute-energy calibration traceable to the international system of units for the energy range 4 keV to 10 keV. The new results include emission line profiles for 97 lines, each expressed as a sum of one or more Voigt functions; improved absolute energy uncertainty on 71 of these lines relative to existing reference data; a median uncertainty on the peak energy of 0.24 eV, four to ten times better than the median of prior work; and six lines that lack any measured values in existing reference tables. The 97 lines comprise nearly all of the most intense L lines from these elements under broad-band x-ray excitation. The work improves on previous measurements made with a similar cryogenic spectrometer by the use of sensors with better linearity in the absorbed energy and a gold x-ray absorbing layer that has a Gaussian energy-response function. It also employs a novel sample holder that enables rapid switching between science targets and calibration targets with excellent gain balancing. Most of the results for peak energy values shown here should be considered as replacements for the currently tabulated standard reference values, while the line shapes given here represent a significant expansion of the scope of available reference data.

3.
Phys Rev Lett ; 127(5): 053001, 2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34397250

RESUMEN

We observed electronic K x rays emitted from muonic iron atoms using superconducting transition-edge sensor microcalorimeters. The energy resolution of 5.2 eV in FWHM allowed us to observe the asymmetric broad profile of the electronic characteristic Kα and Kß x rays together with the hypersatellite K^{h}α x rays around 6 keV. This signature reflects the time-dependent screening of the nuclear charge by the negative muon and the L-shell electrons, accompanied by electron side feeding. Assisted by a simulation, these data clearly reveal the electronic K- and L-shell hole production and their temporal evolution on the 10-20 fs scale during the muon cascade process.

4.
Appl Radiat Isot ; 172: 109693, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33774323

RESUMEN

225Ac is a valuable medical radionuclide for targeted α therapy, but 227Ac is an undesirable byproduct of an accelerator-based synthesis method under investigation. Sufficient detector sensitivity is critical for quantifying the trace impurity of 227Ac, with the 227Ac/225Ac activity ratio predicted to be approximately 0.15% by end-of-bombardment (EOB). Superconducting transition edge sensor (TES) microcalorimeters offer high resolution energy spectroscopy using the normal-to-superconducting phase transition to measure small changes in temperature. By embedding 225Ac production samples in a gold foil thermally coupled to a TES microcalorimeter we can measure the decay energies of the radionuclides embedded with high resolution and 100% detection efficiency. This technique, known as decay energy spectroscopy (DES), collapses several peaks from α decays into single Q-value peaks. In practice there are more complex factors in the interpretation of data using DES, which we will discuss herein. Using this technique we measured the EOB 227Ac impurity to be (0.142 ± 0.005)% for a single production sample. This demonstration has shown that DES is a useful tool for quantitative measurements of complicated spectra.


Asunto(s)
Actinio/química , Análisis Espectral/métodos , Calorimetría/métodos , Temperatura
5.
Artículo en Inglés | MEDLINE | ID: mdl-31186605

RESUMEN

With the improving energy resolution of transitionedge sensor (TES) based microcalorimeters, performance verification and calibration of these detectors has become increasingly challenging, especially in the energy range below 1 keV where fluorescent atomic X-ray lines have linewidths that are wider than the detector energy resolution and require impractically high statistics to determine the gain and deconvolve the instrumental profile. Better behaved calibration sources such as grating monochromators are too cumbersome for space missions and are difficult to use in the lab. As an alternative, we are exploring the use of pulses of 3 eV optical photons delivered by an optical fiber to generate combs of known energies with known arrival times. Here, we discuss initial results of this technique obtained with 2 eV and 0.7 eV resolution X-ray microcalorimeters. With the 2 eV detector, we have achieved photon number resolution for pulses with mean photon number up to 133 (corresponding to 0.4 keV).

6.
Artículo en Inglés | MEDLINE | ID: mdl-33335337

RESUMEN

Microwave SQUID multiplexing has become a key technology for reading out large arrays of X-ray and gamma-ray microcalorimeters with mux factors of 100 or more. The desire for fast X-ray pulses that accommodate photon counting rates of hundreds or thousands of counts per second per sensor drives system design toward high sensor current slew rate. Typically, readout of high current slew rate events is accomplished by increasing the sampling rate, such that rates of order 1MHz may be necessary for some experiments. In our microwave multiplexed readout scheme, the effective sampling rate is set by the frequency of the flux-ramp modulation (f r) used to linearize the SQUID response. The maximum current slew rate between samples is then nominally Φ 0 f r/2M in (where M in is the input coupling) because it is generally not possible to distinguish phase shifts of > π from negative phase shifts of < -π. However, during a pulse, we know which direction the current ought to be slewing, and this makes it possible to reconstruct a pulse where the magnitude of the phase shift between samples is > π. We describe a practical algorithm to identify and reconstruct pulses that exceed this nominal slew rate limit on the rising edge. Using pulses produced by X-ray transition-edge sensors, we find that the pulse reconstruction has a negligible impact on energy resolution compared to arrival time effects induced by under-sampling the rising edge. This technique can increase the effective slew rate limit by more than a factor of two, thereby either reducing the resonator bandwidth required or extending the energy range of measurable photons. The extra margin could also be used to improve crosstalk or to decrease readout noise.

7.
Rev Sci Instrum ; 90(12): 123107, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31893849

RESUMEN

We report on the design, commissioning, and initial measurements of a Transition-Edge Sensor (TES) x-ray spectrometer for the Electron Beam Ion Trap (EBIT) at the National Institute of Standards and Technology (NIST). Over the past few decades, the NIST EBIT has produced numerous studies of highly charged ions in diverse fields such as atomic physics, plasma spectroscopy, and laboratory astrophysics. The newly commissioned NIST EBIT TES Spectrometer (NETS) improves the measurement capabilities of the EBIT through a combination of high x-ray collection efficiency and resolving power. NETS utilizes 192 individual TES x-ray microcalorimeters (166/192 yield) to improve upon the collection area by a factor of ∼30 over the 4-pixel neutron transmutation doped germanium-based microcalorimeter spectrometer previously used at the NIST EBIT. The NETS microcalorimeters are optimized for the x-ray energies from roughly 500 eV to 8000 eV and achieve an energy resolution of 3.7 eV-5.0 eV over this range, a more modest (<2×) improvement over the previous microcalorimeters. Beyond this energy range, NETS can operate with various trade-offs, the most significant of which are reduced efficiency at lower energies and being limited to a subset of the pixels at higher energies. As an initial demonstration of the capabilities of NETS, we measured transitions in He-like and H-like O, Ne, and Ar as well as Ni-like W. We detail the energy calibration and data analysis techniques used to transform detector counts into x-ray spectra, a process that will be the basis for analyzing future data.

8.
Nature ; 564(7736): 378-381, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30568193

RESUMEN

Carbon, nitrogen and oxygen are the three most abundant elements in the Galaxy after hydrogen and helium. Whereas hydrogen and helium were created in the Big Bang, carbon, nitrogen and oxygen arise from nucleosynthesis in stars. Of particular interest1,2 are the isotopic ratios 12C/13C, 14N/15N and 16O/17O because they are effective tracers of nucleosynthesis and help to benchmark the chemical processes that occurred in primitive interstellar material as it evolved into our Solar System3. However, the origins of the rare isotopes 15N and 17O remain uncertain, although novae and very massive stars that explode as supernovae are postulated4-6 to be the main sources of 15N. Here we report millimetre-wavelength observations of the young bipolar planetary nebula K4-47 that indicate another possible source for these isotopes. We identify various carbon-bearing molecules in K4-47 that show that this object is carbon-rich, and find unusually high enrichment in rare carbon (13C), oxygen (17O) and nitrogen (15N) isotopes: 12C/13C = 2.2 ± 0.8, 16O/17O = 21.4 ± 10.3 and 14N/15N = 13.6 ± 6.5 (uncertainties are three standard deviations); for comparison, the corresponding solar ratios7 are 89.4 ± 0.2, 2,632 ± 7 and 435 ± 57. One possible interpretation of these results is that K4-47 arose from a J-type asymptotic giant branch star that underwent a helium-shell flash (an explosive nucleosynthetic event that converts large quantities of helium to carbon and other elements), enriching the resulting planetary nebula in 15N and 17O and creating its bipolar geometry. Other possible explanations are that K4-47 is a binary system or that it resulted from a white dwarf merger, as has been suggested for object CK Vul8. These results suggest that nucleosynthesis of carbon, nitrogen and oxygen is not well understood and that the classification of certain stardust grains must be reconsidered.

9.
Rev Sci Instrum ; 88(5): 053108, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28571411

RESUMEN

We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more traditional high-resolution spectrometers that rely on wavelength-dispersive techniques. This advantage is most useful in applications that are traditionally photon-starved and/or involve radiation-sensitive samples. Each energy-dispersive spectrometer is built around an array of several hundred transition-edge sensors (TESs). TESs are superconducting thin films that are biased into their superconducting-to-normal-metal transitions. The spectrometers share a common readout architecture and many design elements, such as a compact, 65 mK detector package, 8-column time-division-multiplexed superconducting quantum-interference device readout, and a liquid-cryogen-free cryogenic system that is a two-stage adiabatic-demagnetization refrigerator backed by a pulse-tube cryocooler. We have adapted this flexible architecture to mate to a variety of sample chambers and measurement systems that encompass a range of observing geometries. There are two different types of TES pixels employed. The first, designed for X-ray energies below 10 keV, has a best demonstrated energy resolution of 2.1 eV (full-width-at-half-maximum or FWHM) at 5.9 keV. The second, designed for X-ray energies below 2 keV, has a best demonstrated resolution of 1.0 eV (FWHM) at 500 eV. Our team has now deployed seven of these X-ray spectrometers to a variety of light sources, accelerator facilities, and laboratory-scale experiments; these seven spectrometers have already performed measurements related to their applications. Another five of these spectrometers will come online in the near future. We have applied our TES spectrometers to the following measurement applications: synchrotron-based absorption and emission spectroscopy and energy-resolved scattering; accelerator-based spectroscopy of hadronic atoms and particle-induced-emission spectroscopy; laboratory-based time-resolved absorption and emission spectroscopy with a tabletop, broadband source; and laboratory-based metrology of X-ray-emission lines. Here, we discuss the design, construction, and operation of our TES spectrometers and show first-light measurements from the various systems. Finally, because X-ray-TES technology continues to mature, we discuss improvements to array size, energy resolution, and counting speed that we anticipate in our next generation of TES-X-ray spectrometers and beyond.

10.
J Low Temp Phys ; 184(1): 389-395, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27325902

RESUMEN

Time-division multiplexing (TDM) is a mature scheme for the readout of arrays of transition-edge sensors (TESs). TDM is based on superconducting-quantum-interference-device (SQUID) current amplifiers. Multiple spectrometers based on gamma-ray and X-ray microcalorimeters have been operated with TDM readout, each at the scale of 200 sensors per spectrometer, as have several astronomical cameras with thousands of sub-mm or microwave bolometers. Here we present the details of two different versions of our TDM system designed to read out X-ray TESs. The first has been field-deployed in two 160-sensor (8 columns × 20 rows) spectrometers and four 240-sensor (8 columns × 30 rows) spectrometers. It has a three-SQUID-stage architecture, switches rows every 320 ns, and has total readout noise of 0.41 µΦ0/√Hz. The second, which is presently under development, has a two-SQUID-stage architecture, switches rows every 160 ns, and has total readout noise of 0.19 µΦ0/√Hz. Both quoted noise values are non-multiplexed and referred to the first-stage SQUID. In a demonstration of this new architecture, a multiplexed 1-column × 32-row array of NIST TESs achieved average energy resolution of 2.55±0.01 eV at 6 keV.

11.
J Synchrotron Radiat ; 22(3): 766-75, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25931095

RESUMEN

X-ray emission spectroscopy (XES) is a powerful element-selective tool to analyze the oxidation states of atoms in complex compounds, determine their electronic configuration, and identify unknown compounds in challenging environments. Until now the low efficiency of wavelength-dispersive X-ray spectrometer technology has limited the use of XES, especially in combination with weaker laboratory X-ray sources. More efficient energy-dispersive detectors have either insufficient energy resolution because of the statistical limits described by Fano or too low counting rates to be of practical use. This paper updates an approach to high-resolution X-ray emission spectroscopy that uses a microcalorimeter detector array of superconducting transition-edge sensors (TESs). TES arrays are discussed and compared with conventional methods, and shown under which circumstances they are superior. It is also shown that a TES array can be integrated into a table-top time-resolved X-ray source and a soft X-ray synchrotron beamline to perform emission spectroscopy with good chemical sensitivity over a very wide range of energies.

12.
Orig Life Evol Biosph ; 45(1-2): 275-88, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25894971

RESUMEN

An ever increasing amount of molecular material is being discovered in the interstellar medium, associated with the birth and death of stars and planetary systems. Radio and millimeter-wave astronomical observations, made possible by high-resolution laboratory spectroscopy, uniquely trace the history of gas-phase molecules with biogenic elements. Using a combination of both disciplines, the full extent of the cycling of molecular matter, from circumstellar ejecta of dying stars - objects which expel large amounts of carbon - to nascent solar systems, has been investigated. Such stellar ejecta have been found to exhibit a rich and varied chemical content. Observations demonstrate that this molecular material is passed onto planetary nebulae, the final phase of stellar evolution. Here the star sheds almost its entire original mass, becoming an ultraviolet-emitting white dwarf. Molecules such as H2CO, HCN, HCO(+), and CCH are present in significant concentrations across the entire age span of such nebulae. These data suggest that gas-phase polyatomic, carbon-containing molecules survive the planetary nebula phase and subsequently are transported into the interstellar medium, seeding the chemistry of diffuse and then dense clouds. The extent of the chemical complexity in dense clouds is unknown, hindered by the high spectral line density. Organic species such as acetamide and methyl amine are present in such objects, and NH2CHO has a wide Galactic distribution. However, organophosphorus compounds have not yet been detected in dense clouds. Based on carbon and nitrogen isotope ratios, molecular material from the ISM appears to become incorporated into solar system planetesimals. It is therefore likely that interstellar synthesis influences prebiotic chemistry on planet surfaces.


Asunto(s)
Evolución Química , Medio Ambiente Extraterrestre/química , Sistema Solar , Estrellas Celestiales
13.
Phys Rev Lett ; 110(13): 138302, 2013 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-23581383

RESUMEN

This work presents an x-ray absorption measurement by use of ionizing radiation generated by a femtosecond pulsed laser source. The spectrometer was a microcalorimetric array whose pixels are capable of accurately measuring energies of individual radiation quanta. An isotropic continuum x-ray spectrum in the few-keV range was generated from a laser plasma source with a water-jet target. X rays were transmitted through a ferrocene powder sample to the detector, whose pixels have average photon energy resolution ΔE=3.14 eV full-width-at-half-maximum at 5.9 keV. The bond distance of ferrocene was retrieved from this first hard-x-ray absorption fine-structure spectrum collected with an energy-dispersive detector. This technique will be broadly enabling for time-resolved observations of structural dynamics in photoactive systems.

14.
Rev Sci Instrum ; 83(9): 093113, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23020368

RESUMEN

Improvements in superconductor device fabrication, detector hybridization techniques, and superconducting quantum interference device readout have made square-centimeter-sized arrays of gamma-ray microcalorimeters, based on transition-edge sensors (TESs), possible. At these collecting areas, gamma microcalorimeters can utilize their unprecedented energy resolution to perform spectroscopy in a number of applications that are limited by closely-spaced spectral peaks, for example, the nondestructive analysis of nuclear materials. We have built a 256 pixel spectrometer with an average full-width-at-half-maximum energy resolution of 53 eV at 97 keV, a useable dynamic range above 400 keV, and a collecting area of 5 cm(2). We have demonstrated multiplexed readout of the full 256 pixel array with 236 of the pixels (91%) giving spectroscopic data. This is the largest multiplexed array of TES microcalorimeters to date. This paper will review the spectrometer, highlighting the instrument design, detector fabrication, readout, operation of the instrument, and data processing. Further, we describe the characterization and performance of the newest 256 pixel array.

15.
J Chem Phys ; 137(3): 035104, 2012 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-22830733

RESUMEN

Genetic feedback loops in cells break detailed balance and involve bimolecular reactions; hence, exact solutions revealing the nature of the stochastic fluctuations in these loops are lacking. We here consider the master equation for a gene regulatory feedback loop: a gene produces protein which then binds to the promoter of the same gene and regulates its expression. The protein degrades in its free and bound forms. This network breaks detailed balance and involves a single bimolecular reaction step. We provide an exact solution of the steady-state master equation for arbitrary values of the parameters, and present simplified solutions for a number of special cases. The full parametric dependence of the analytical non-equilibrium steady-state probability distribution is verified by direct numerical solution of the master equations. For the case where the degradation rate of bound and free protein is the same, our solution is at variance with a previous claim of an exact solution [J. E. M. Hornos, D. Schultz, G. C. P. Innocentini, J. Wang, A. M. Walczak, J. N. Onuchic, and P. G. Wolynes, Phys. Rev. E 72, 051907 (2005), and subsequent studies]. We show explicitly that this is due to an unphysical formulation of the underlying master equation in those studies.


Asunto(s)
Algoritmos , Redes Reguladoras de Genes , Modelos Genéticos , Animales , Regulación de la Expresión Génica , Humanos , Probabilidad , Regiones Promotoras Genéticas , Proteínas/genética , Proteínas/metabolismo
16.
Phys Rev Lett ; 98(9): 096804, 2007 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-17359186

RESUMEN

We measure the noise added by an atomic point contact operated as a displacement detector. With a microwave technique, we increase the measurement speed of atomic point contacts by a factor of 500. The measurement is then fast enough to detect the resonant motion of a nanomechanical beam at frequencies up to 60 MHz and sensitive enough to observe the random thermal motion of the beam at 250 mK. We demonstrate a shot-noise limited imprecision of 2.3 fm/square root[Hz] and observe a 78 aN/square root[Hz] backaction force, yielding a total uncertainty in the beam's displacement that is 42 times the standard-quantum limit.

17.
Arch Dis Child ; 91(8): 661-5, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16861484

RESUMEN

AIMS: To describe the outcome of four years' nationwide neonatal screening for congenital toxoplasmosis in liveborn newborns. METHODS: Congenital toxoplasmosis was diagnosed if specific Toxoplasma gondii IgM antibodies were detected in eluate from the PKU Guthrie filter paper card from a child. Infants diagnosed with congenital toxoplasmosis were examined for intracranial and retinal lesions and treated for three months with sulphadiazine, pyrimethamine, and folinic acid continuously. RESULTS: Eluates from PKU-cards from 262 912 newborns were analysed. The birth prevalence of congenital toxoplasma infection was 2.1 per 10 000 liveborns. Congenital toxoplasmosis was suspected in 96 infants and confirmed in 55. Forty seven children were examined for intracranial and retinal lesions soon after birth; 12 had clinical signs at this first examination. Of these, 5 had intracranial calcifications, 2 had retinochoroidal lesions, 4 had intracranial calcifications and retinochoroidal lesions, and 1 had hydrocephalus, intracranial calcifications, and retinochoroidal lesions. Ninety four eyes were examined soon after birth; there were central retinochoroidal lesions in 9. Two children had macular lesion of both eyes, five had macular lesions of one eye. At 1 year of age, 10/68 eyes had central lesions, and at 3 years of age, 5/32 had central lesions. Thus new retinochoroidal lesions developed in three eyes in the observation period. CONCLUSIONS: Neonatal screening is feasible for diagnosing children with congenital toxoplasmosis at birth in low endemic areas. Retinochoroiditis with macular lesion was diagnosed in 9.6% of the eyes at birth and in 15.6% of the eyes examined at 3 years of age.


Asunto(s)
Tamizaje Neonatal/métodos , Toxoplasmosis Congénita/diagnóstico , Algoritmos , Animales , Anticuerpos Antiprotozoarios/sangre , Dinamarca , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Lactante , Recién Nacido , Embarazo , Complicaciones Parasitarias del Embarazo/sangre , Sensibilidad y Especificidad , Toxoplasma/aislamiento & purificación
18.
Phys Rev Lett ; 93(4): 045901, 2004 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-15323773

RESUMEN

Measurements of the thermal properties of nanoscale electron systems have ignored the effect of electrical noise radiated between the electron gas and the environment, through the electrical leads. Here we calculate the effect of this photon-mediated process, and show that the low-temperature thermal conductance is equal to the quantum of thermal conductance, GQ = pi2kB2T/3h, times a coupling coefficient. We find that, at very low temperatures, the photon conductance is the dominant route for thermal equilibration, while at moderate temperatures this relaxation mode adds one quantum of thermal conductance to that due to phonon transport.

20.
J Econ Entomol ; 94(5): 1308-17, 2001 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11681699

RESUMEN

A sand dilution assay was developed to study how composting affects the nutritional value of stored laying hen manure for larvae of the house fly, Musca domestica L. Equal numbers of eggs were inoculated into graded amounts of stock manure and incubated under standardized moisture conditions. Survival and mass per emerging adult diminished with progressively lower supplies of manure per larva, whether the manure was diluted into clean, white sand or placed on top of an equal volume of sand. Mass of adults per original egg was an increasing linear function of log, manure supply, with extrapolated lower supply threshold, S(L) = 0.06 g per egg. It is proposed that S(L) is a measure of a substrate's nutritional value--the greater the threshold, the lower its value. Dilution of the same stock manure in loam or sandy loam reduced the manure's apparent nutritional value, and dehydration of the stock manure to 20% water before rehydration to 70% also reduced nutritional value. Assays of bulk samples from replicated piles of laying hen manure mixed with sunflower hulls indicated the mixture was nutritionally equivalent to the stock manure, but that 3-4 wk of subsequent aerobic, thermophilic composting reduced it to approximately 10% of its initial value. These results suggest that composting may be a useful technique for reducing the fly breeding potential of laying hen manure and other substrates that must be stored before spreading and incorporation on crop land.


Asunto(s)
Alimentación Animal , Moscas Domésticas/crecimiento & desarrollo , Análisis de Varianza , Animales , Pollos , Heces , Moscas Domésticas/metabolismo , Fenómenos Fisiológicos de la Nutrición , Valor Nutritivo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...