Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Virol ; 96(5): e29610, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38654702

RESUMEN

In 2022, a series of human monkeypox cases in multiple countries led to the largest and most widespread outbreak outside the known endemic areas. Setup of proper genomic surveillance is of utmost importance to control such outbreaks. To this end, we performed Nanopore (PromethION P24) and Illumina (NextSeq. 2000) Whole Genome Sequencing (WGS) of a monkeypox sample. Adaptive sampling was applied for in silico depletion of the human host genome, allowing for the enrichment of low abundance viral DNA without a priori knowledge of sample composition. Nanopore sequencing allowed for high viral genome coverage, tracking of sample composition during sequencing, strain determination, and preliminary assessment of mutational pattern. In addition to that, only Nanopore data allowed us to resolve the entire monkeypox virus genome, with respect to two structural variants belonging to the genes OPG015 and OPG208. These SVs in important host range genes seem stable throughout the outbreak and are frequently misassembled and/or misannotated due to the prevalence of short read sequencing or short read first assembly. Ideally, standalone standard Illumina sequencing should not be used for Monkeypox WGS and de novo assembly, since it will obfuscate the structure of the genome, which has an impact on the quality and completeness of the genomes deposited in public databases and thus possibly on the ability to evaluate the complete genetic reason for the host range change of monkeypox in the current pandemic.


Asunto(s)
Genoma Viral , Metagenómica , Monkeypox virus , Mpox , Secuenciación de Nanoporos , Secuenciación Completa del Genoma , Humanos , Genoma Viral/genética , Metagenómica/métodos , Secuenciación de Nanoporos/métodos , Mpox/epidemiología , Mpox/virología , Monkeypox virus/genética , Monkeypox virus/aislamiento & purificación , Secuenciación Completa del Genoma/métodos , Nanoporos , ADN Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
2.
BMC Genomics ; 23(1): 677, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36180835

RESUMEN

BACKGROUND: With the expansion of animal production, parasitic helminths are gaining increasing economic importance. However, application of several established deworming agents can harm treated hosts and environment due to their low specificity. Furthermore, the number of parasite strains showing resistance is growing, while hardly any new anthelminthics are being developed. Here, we present a bioinformatics workflow designed to reduce the time and cost in the development of new strategies against parasites. The workflow includes quantitative transcriptomics and proteomics, 3D structure modeling, binding site prediction, and virtual ligand screening. Its use is demonstrated for Acanthocephala (thorny-headed worms) which are an emerging pest in fish aquaculture. We included three acanthocephalans (Pomphorhynchus laevis, Neoechinorhynchus agilis, Neoechinorhynchus buttnerae) from four fish species (common barbel, European eel, thinlip mullet, tambaqui). RESULTS: The workflow led to eleven highly specific candidate targets in acanthocephalans. The candidate targets showed constant and elevated transcript abundances across definitive and accidental hosts, suggestive of constitutive expression and functional importance. Hence, the impairment of the corresponding proteins should enable specific and effective killing of acanthocephalans. Candidate targets were also highly abundant in the acanthocephalan body wall, through which these gutless parasites take up nutrients. Thus, the candidate targets are likely to be accessible to compounds that are orally administered to fish. Virtual ligand screening led to ten compounds, of which five appeared to be especially promising according to ADMET, GHS, and RO5 criteria: tadalafil, pranazepide, piketoprofen, heliomycin, and the nematicide derquantel. CONCLUSIONS: The combination of genomics, transcriptomics, and proteomics led to a broadly applicable procedure for the cost- and time-saving identification of candidate target proteins in parasites. The ligands predicted to bind can now be further evaluated for their suitability in the control of acanthocephalans. The workflow has been deposited at the Galaxy workflow server under the URL tinyurl.com/yx72rda7 .


Asunto(s)
Acantocéfalos , Enfermedades de los Peces , Acantocéfalos/química , Acantocéfalos/genética , Acantocéfalos/metabolismo , Animales , Antiparasitarios/farmacología , Enfermedades de los Peces/parasitología , Peces , Ligandos , Tadalafilo/metabolismo , Flujo de Trabajo
3.
Cell Biosci ; 12(1): 75, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35642000

RESUMEN

BACKGROUND: A central question in parasitology is why parasites mature and reproduce in some host species but not in others. Yet, a better understanding of the inability of parasites to complete their life cycles in less suitable hosts may hold clues for their control. To shed light on the molecular basis of parasite (non-)maturation, we analyzed transcriptomes of thorny-headed worms (Acanthocephala: Pomphorhynchus laevis), and compared developmentally arrested worms excised from European eel (Anguilla anguilla) to developmentally unrestricted worms from barbel (Barbus barbus). RESULTS: Based on 20 RNA-Seq datasets, we demonstrate that transcriptomic profiles are more similar between P. laevis males and females from eel than between their counterparts from barbel. Impairment of sexual phenotype development was reflected in gene ontology enrichment analyses of genes having differential transcript abundances. Genes having reproduction- and energy-related annotations were found to be affected by parasitizing either eel or barbel. According to this, the molecular machinery of male and female acanthocephalans from the eel is less tailored to reproduction and more to coping with the less suitable environment provided by this host. The pattern was reversed in their counterparts from the definitive host, barbel. CONCLUSIONS: Comparative analysis of transcriptomes of developmentally arrested and reproducing parasites elucidates the challenges parasites encounter in hosts which are unsuitable for maturation and reproduction. By studying a gonochoric species, we were also able to highlight sex-specific traits. In fact, transcriptomic evidence for energy shortage in female acanthocephalans associates with their larger body size. Thus, energy metabolism and glycolysis should be promising targets for the treatment of acanthocephaliasis. Although inherently enabling a higher resolution in heterosexuals, the comparison of parasites from definitive hosts and less suitable hosts, in which the parasites merely survive, should be applicable to hermaphroditic helminths. This may open new perspectives in the control of other helminth pathogens of humans and livestock.

4.
Sci Rep ; 12(1): 226, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34996998

RESUMEN

Using high-depth whole genome sequencing of F0 mating pairs and multiple individual F1 offspring, we estimated the nuclear mutation rate per generation in the malaria vectors Anopheles coluzzii and Anopheles stephensi by detecting de novo genetic mutations. A purpose-built computer program was employed to filter actual mutations from a deep background of superficially similar artifacts resulting from read misalignment. Performance of filtering parameters was determined using software-simulated mutations, and the resulting estimate of false negative rate was used to correct final mutation rate estimates. Spontaneous mutation rates by base substitution were estimated at 1.00 × 10-9 (95% confidence interval, 2.06 × 10-10-2.91 × 10-9) and 1.36 × 10-9 (95% confidence interval, 4.42 × 10-10-3.18 × 10-9) per site per generation in A. coluzzii and A. stephensi respectively. Although similar studies have been performed on other insect species including dipterans, this is the first study to empirically measure mutation rates in the important genus Anopheles, and thus provides an estimate of µ that will be of utility for comparative evolutionary genomics, as well as for population genetic analysis of malaria vector mosquito species.


Asunto(s)
Anopheles/genética , Mosquitos Vectores/genética , Animales , Femenino , Humanos , Proteínas de Insectos/genética , Malaria/transmisión , Masculino , Tasa de Mutación , Secuenciación Completa del Genoma
5.
BMC Genomics ; 22(1): 604, 2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34372786

RESUMEN

BACKGROUND: Seisonidea (also Seisonacea or Seisonidae) is a group of small animals living on marine crustaceans (Nebalia spec.) with only four species described so far. Its monophyletic origin with mostly free-living wheel animals (Monogononta, Bdelloidea) and endoparasitic thorny-headed worms (Acanthocephala) is widely accepted. However, the phylogenetic relationships inside the Rotifera-Acanthocephala clade (Rotifera sensu lato or Syndermata) are subject to ongoing debate, with consequences for our understanding of how genomes and lifestyles might have evolved. To gain new insights, we analyzed first drafts of the genome and transcriptome of the key taxon Seisonidea. RESULTS: Analyses of gDNA-Seq and mRNA-Seq data uncovered two genetically distinct lineages in Seison nebaliae Grube, 1861 off the French Channel coast. Their mitochondrial haplotypes shared only 82% sequence identity despite identical gene order. In the nuclear genome, distinct linages were reflected in different gene compactness, GC content and codon usage. The haploid nuclear genome spans ca. 46 Mb, of which 96% were reconstructed. According to ~ 23,000 SuperTranscripts, gene number in S. nebaliae should be within the range published for other members of Rotifera-Acanthocephala. Consistent with this, numbers of metazoan core orthologues and ANTP-type transcriptional regulatory genes in the S. nebaliae genome assembly were between the corresponding numbers in the other assemblies analyzed. We additionally provide evidence that a basal branching of Seisonidea within Rotifera-Acanthocephala could reflect attraction to the outgroup. Accordingly, rooting via a reconstructed ancestral sequence led to monophyletic Pararotatoria (Seisonidea+Acanthocephala) within Hemirotifera (Bdelloidea+Pararotatoria). CONCLUSION: Matching genome/transcriptome metrics with the above phylogenetic hypothesis suggests that a haploid nuclear genome of about 50 Mb represents the plesiomorphic state for Rotifera-Acanthocephala. Smaller genome size in S. nebaliae probably results from subsequent reduction. In contrast, genome size should have increased independently in monogononts as well as bdelloid and acanthocephalan stem lines. The present data additionally indicate a decrease in gene repertoire from free-living to epizoic and endoparasitic lifestyles. Potentially, this reflects corresponding steps from the root of Rotifera-Acanthocephala via the last common ancestors of Hemirotifera and Pararotatoria to the one of Acanthocephala. Lastly, rooting via a reconstructed ancestral sequence may prove useful in phylogenetic analyses of other deep splits.


Asunto(s)
Acantocéfalos , Rotíferos , Acantocéfalos/genética , Animales , Genómica , Filogenia , Rotíferos/genética , Transcriptoma
6.
Proc Natl Acad Sci U S A ; 117(37): 22805-22814, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32839345

RESUMEN

A Cas9/guide RNA-based gene drive strain, AgNosCd-1, was developed to deliver antiparasite effector molecules to the malaria vector mosquito, Anopheles gambiae The drive system targets the cardinal gene ortholog producing a red-eye phenotype. Drive can achieve 98 to 100% in both sexes and full introduction was observed in small cage trials within 6 to 10 generations following a single release of gene-drive males. No genetic load resulting from the integrated transgenes impaired drive performance in the trials. Potential drive-resistant target-site alleles arise at a frequency <0.1, and five of the most prevalent polymorphisms in the guide RNA target site in collections of colonized and wild-derived African mosquitoes do not prevent cleavage in vitro by the Cas9/guide RNA complex. Only one predicted off-target site is cleavable in vitro, with negligible deletions observed in vivo. AgNosCd-1 meets key performance criteria of a target product profile and can be a valuable component of a field-ready strain for mosquito population modification to control malaria transmission.


Asunto(s)
Anopheles/genética , Tecnología de Genética Dirigida/métodos , Control de Mosquitos/métodos , Alelos , Animales , Animales Modificados Genéticamente/genética , Sistemas CRISPR-Cas/genética , Genética de Población/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Malaria/prevención & control , Mosquitos Vectores/genética , Fenotipo , Transgenes/genética
7.
Nat Commun ; 11(1): 1425, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32188851

RESUMEN

A number of recent papers report that standing genetic variation in natural populations includes ubiquitous polymorphisms within target sites for Cas9-based gene drive (CGD) and that these "drive resistant alleles" (DRA) preclude the successful application of CGD for managing these populations. Here we report the results of a survey of 1280 genomes of the mosquitoes Anopheles gambiae, An. coluzzii, and Aedes aegypti in which we determine that ~90% of all protein-encoding CGD target genes in natural populations include at least one target site with no DRAs at a frequency of ≥1.0%. We conclude that the abundance of conserved target sites in mosquito genomes and the inherent flexibility in CGD design obviates the concern that DRAs present in the standing genetic variation of mosquito populations will be detrimental to the deployment of this technology for population modification strategies.


Asunto(s)
Aedes/genética , Anopheles/genética , Genoma de los Insectos , Alelos , Animales , Sistemas CRISPR-Cas , Femenino , Frecuencia de los Genes , Proteínas de Insectos/genética , Mosquitos Vectores/genética
8.
G3 (Bethesda) ; 10(4): 1151-1157, 2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32060047

RESUMEN

Chironomus riparius is of great importance as a study species in various fields like ecotoxicology, molecular genetics, developmental biology and ecology. However, only a fragmented draft genome exists to date, hindering the recent rush of population genomic studies in this species. Making use of 50 NGS datasets, we present a hybrid genome assembly from short and long sequence reads that make C. riparius' genome one of the most contiguous Dipteran genomes published, the first complete mitochondrial genome of the species, and the respective recombination rate among the first insect recombination rates at all. The genome assembly and associated resources will be highly valuable to the broad community working with dipterans in general and chironomids in particular. The estimated recombination rate will help evolutionary biologists gaining a better understanding of commonalities and differences of genomic patterns in insects.


Asunto(s)
Chironomidae , Animales , Chironomidae/genética , Genoma
9.
Elife ; 92020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31960794

RESUMEN

Aedes aegypti is the principal mosquito vector for many arboviruses that increasingly infect millions of people every year. With an escalating burden of infections and the relative failure of traditional control methods, the development of innovative control measures has become of paramount importance. The use of gene drives has sparked significant enthusiasm for genetic control of mosquitoes; however, no such system has been developed in Ae. aegypti. To fill this void, here we develop several CRISPR-based split gene drives for use in this vector. With cleavage rates up to 100% and transmission rates as high as 94%, mathematical models predict that these systems could spread anti-pathogen effector genes into wild populations in a safe, confinable and reversible manner appropriate for field trials and effective for controlling disease. These findings could expedite the development of effector-linked gene drives that could safely control wild populations of Ae. aegypti to combat local pathogen transmission.


Asunto(s)
Aedes/genética , Tecnología de Genética Dirigida , Mosquitos Vectores/genética , Aedes/fisiología , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/fisiología , Sistemas CRISPR-Cas/genética , Femenino , Masculino , Mosquitos Vectores/fisiología , ARN Guía de Kinetoplastida/genética
10.
Commun Biol ; 2: 473, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31886413

RESUMEN

The mosquito Anopheles gambiae s.s. is distributed across most of sub-Saharan Africa and is of major scientific and public health interest for being an African malaria vector. Here we present population genomic analyses of 111 specimens sampled from west to east Africa, including the first whole genome sequences from oceanic islands, the Comoros. Genetic distances between populations of A. gambiae are discordant with geographic distances but are consistent with a stepwise migration scenario in which the species increases its range from west to east Africa through consecutive founder events over the last ~200,000 years. Geological barriers like the Congo River basin and the East African rift seem to play an important role in shaping this process. Moreover, we find a high degree of genetic isolation of populations on the Comoros, confirming the potential of these islands as candidate sites for potential field trials of genetically engineered mosquitoes for malaria control.


Asunto(s)
Anopheles/genética , Efecto Fundador , Genética de Población , Mosquitos Vectores/genética , África Oriental , África Occidental , Animales , Geografía , Malaria/epidemiología , Malaria/parasitología , Malaria/transmisión , Densidad de Población , Dinámica Poblacional
11.
Genome Biol Evol ; 11(8): 2306-2311, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31329228

RESUMEN

The success of social insects is largely intertwined with their highly advanced chemical communication system that facilitates recognition and discrimination of species and nest-mates, recruitment, and division of labor. Hydrocarbons, which cover the cuticle of insects, not only serve as waterproofing agents but also constitute a major component of this communication system. Two cryptic Crematogaster species, which share their nest with Camponotus ants, show striking diversity in their cuticular hydrocarbon (CHC) profile. This mutualistic system therefore offers a great opportunity to study the genetic basis of CHC divergence between sister species. As a basis for further genome-wide studies high-quality genomes are needed. Here, we present the annotated draft genome for Crematogaster levior A. By combining the three most commonly used sequencing techniques-Illumina, PacBio, and Oxford Nanopore-we constructed a high-quality de novo ant genome. We show that even low coverage of long reads can add significantly to overall genome contiguity. Annotation of desaturase and elongase genes, which play a role in CHC biosynthesis revealed one of the largest repertoires in ants and a higher number of desaturases in general than in other Hymenoptera. This may provide a mechanistic explanation for the high diversity observed in C. levior CHC profiles.


Asunto(s)
Hormigas/genética , Evolución Molecular , Genoma de los Insectos , Genómica/métodos , Hidrocarburos/metabolismo , Proteínas de Insectos/genética , Simbiosis , Animales , Hormigas/clasificación , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Familia de Multigenes , Especificidad de la Especie , Transcriptoma
12.
BMC Genomics ; 20(1): 204, 2019 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-30866822

RESUMEN

BACKGROUND: In the summer of 2013, Aedes aegypti Linnaeus was first detected in three cities in central California (Clovis, Madera and Menlo Park). It has now been detected in multiple locations in central and southern CA as far south as San Diego and Imperial Counties. A number of published reports suggest that CA populations have been established from multiple independent introductions. RESULTS: Here we report the first population genomics analyses of Ae. aegypti based on individual, field collected whole genome sequences. We analyzed 46 Ae. aegypti genomes to establish genetic relationships among populations from sites in California, Florida and South Africa. Based on 4.65 million high quality biallelic SNPs, we identified 3 major genetic clusters within California; one that includes all sample sites in the southern part of the state (South of Tehachapi mountain range) plus the town of Exeter in central California and two additional clusters in central California. CONCLUSIONS: A lack of concordance between mitochondrial and nuclear genealogies suggests that the three founding populations were polymorphic for two main mitochondrial haplotypes prior to being introduced to California. One of these has been lost in the Clovis populations, possibly by a founder effect. Genome-wide comparisons indicate extensive differentiation between genetic clusters. Our observations support recent introductions of Ae. aegypti into California from multiple, genetically diverged source populations. Our data reveal signs of hybridization among diverged populations within CA. Genetic markers identified in this study will be of great value in pursuing classical population genetic studies which require larger sample sizes.


Asunto(s)
Aedes/clasificación , Genoma de los Insectos , Secuenciación Completa del Genoma/veterinaria , Aedes/genética , Animales , California , Evolución Molecular , Variación Genética , Genética de Población , Tamaño del Genoma , Especies Introducidas , Metagenómica , Mosquitos Vectores/clasificación , Mosquitos Vectores/genética , Filogenia , Filogeografía
13.
Mol Ecol ; 27(24): 4978-4990, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30447117

RESUMEN

Animal species are able to acquire new genetic material via hybridization and subsequent introgression. However, little is known about how foreign genomic material is incorporated into a population over time and what genes are susceptible to introgression. Here, we follow the closely related mosquito sister species Anopheles coluzzii and Anopheles gambiae in a sympatric natural population in Mali at multiple time points spanning a period of 25 years. During this period, we observed the temporary breakdown of mating barriers, which allowed us to explore the fate of alleles that crossed the species boundary in a natural population. Whole genome sequencing of 74 individuals revealed introgression within only 34 genes (0.26% of total genes) from A. gambiae to A. coluzzii, the majority contained within a 4 Mb region on the 2L chromosome which includes the insecticide resistance gene (AGAP004707). We designed a genotyping assay to follow 25 of the 34 introgressed alleles over time and found that all A. gambiae alleles, except four, reached a frequency of 50% in the A. coluzzii population within 4 years (~50 generations) and increased to ~80% within 6 years (~75 generations). However, the frequency of all introgressed alleles, except three, decreased to ~60% in 2016. This suggests an ongoing process of purifying selection in the population against DNA of foreign ancestry, except for alleles that are under positive selection, resulting in a complex genomic landscape. This study shows that stable introgression is limited to only specific genes even within closely related species.


Asunto(s)
Anopheles/genética , Hibridación Genética , Resistencia a los Insecticidas/genética , Selección Genética , Alelos , Animales , Flujo Génico , Genes de Insecto , Genética de Población , Genotipo , Malí , Polimorfismo de Nucleótido Simple , Simpatría
14.
Mol Ecol ; 27(6): 1439-1456, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29473242

RESUMEN

The gradual heterogeneity of climatic factors poses varying selection pressures across geographic distances that leave signatures of clinal variation in the genome. Separating signatures of clinal adaptation from signatures of other evolutionary forces, such as demographic processes, genetic drift and adaptation, to nonclinal conditions of the immediate local environment is a major challenge. Here, we examine climate adaptation in five natural populations of the harlequin fly Chironomus riparius sampled along a climatic gradient across Europe. Our study integrates experimental data, individual genome resequencing, Pool-Seq data and population genetic modelling. Common-garden experiments revealed significantly different population growth rates at test temperatures corresponding to the population origin along the climate gradient, suggesting thermal adaptation on the phenotypic level. Based on a population genomic analysis, we derived empirical estimates of historical demography and migration. We used an FST outlier approach to infer positive selection across the climate gradient, in combination with an environmental association analysis. In total, we identified 162 candidate genes as genomic basis of climate adaptation. Enriched functions among these candidate genes involved the apoptotic process and molecular response to heat, as well as functions identified in studies of climate adaptation in other insects. Our results show that local climate conditions impose strong selection pressures and lead to genomic adaptation despite strong gene flow. Moreover, these results imply that selection to different climatic conditions seems to converge on a functional level, at least between different insect species.


Asunto(s)
Chironomidae/genética , Genética de Población , Genómica , Selección Genética/genética , Aclimatación/genética , Adaptación Fisiológica/genética , Animales , Chironomidae/crecimiento & desarrollo , Clima , Cambio Climático , Ecosistema , Europa (Continente) , Flujo Genético
15.
Mitochondrial DNA B Resour ; 3(2): 994-995, 2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-33474392

RESUMEN

The Aedes aegypti mitogenome (Mt) sequences of field isolates from California and South Africa revealed a deletion between position 14,522 and 14,659 of the Mt contig of the AaegL5 reference genome. The length of the mitogenome of the California isolate was 16,659 bp and had 99.0% similarity with the AaegL5 Mt contig. The South African isolate sequence was 16,600 bp long and had 97.9% similarity with the reference. The region between 1496 and 1664 bp is similar to a nuclear pseudogene that might be a copy of a portion of the mitochondrial genome.

16.
Front Plant Sci ; 8: 1939, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29184562

RESUMEN

C4 photosynthesis is a carbon-concentrating mechanism that evolved independently more than 60 times in a wide range of angiosperm lineages. Among other alterations, the evolution of C4 from ancestral C3 photosynthesis requires changes in the expression of a vast number of genes. Differential gene expression analyses between closely related C3 and C4 species have significantly increased our understanding of C4 functioning and evolution. In Chenopodiaceae, a family that is rich in C4 origins and photosynthetic types, the anatomy, physiology and phylogeny of C4, C2, and C3 species of Salsoleae has been studied in great detail, which facilitated the choice of six samples of five representative species with different photosynthetic types for transcriptome comparisons. mRNA from assimilating organs of each species was sequenced in triplicates, and sequence reads were de novo assembled. These novel genetic resources were then analyzed to provide a better understanding of differential gene expression between C3, C2 and C4 species. All three analyzed C4 species belong to the NADP-ME type as most genes encoding core enzymes of this C4 cycle are highly expressed. The abundance of photorespiratory transcripts is decreased compared to the C3 and C2 species. Like in other C4 lineages of Caryophyllales, our results suggest that PEPC1 is the C4-specific isoform in Salsoleae. Two recently identified transporters from the PHT4 protein family may not only be related to the C4 syndrome, but also active in C2 photosynthesis in Salsoleae. In the two populations of the C2 species S. divaricata transcript abundance of several C4 genes are slightly increased, however, a C4 cycle is not detectable in the carbon isotope values. Most of the core enzymes of photorespiration are highly increased in the C2 species compared to both C3 and C4 species, confirming a successful establishment of the C2 photosynthetic pathway. Furthermore, a function of PEP-CK in C2 photosynthesis appears likely, since PEP-CK gene expression is not only increased in S. divaricata but also in C2 species of other groups.

17.
Sci Rep ; 7(1): 14348, 2017 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-29084988

RESUMEN

The blind subterranean mole rat Spalax shows a remarkable tolerance to hypoxia, cancer-resistance and longevity. Unravelling the genomic basis of these adaptations will be important for biomedical applications. RNA-Seq gene expression data were obtained from normoxic and hypoxic Spalax and rat liver tissue. Hypoxic Spalax broadly downregulates genes from major liver function pathways. This energy-saving response is likely a crucial adaptation to low oxygen levels. In contrast, the hypoxia-sensitive rat shows massive upregulation of energy metabolism genes. Candidate genes with plausible connections to the mole rat's phenotype, such as important key genes related to hypoxia-tolerance, DNA damage repair, tumourigenesis and ageing, are substantially higher expressed in Spalax than in rat. Comparative liver transcriptomics highlights the importance of molecular adaptations at the gene regulatory level in Spalax and pinpoints a variety of starting points for subsequent functional studies.


Asunto(s)
Hipoxia/metabolismo , Ratas Topo/genética , Ratas Topo/fisiología , Adaptación Fisiológica/genética , Envejecimiento/genética , Animales , Reparación del ADN , Tolerancia a Medicamentos/fisiología , Metabolismo Energético/fisiología , Hipoxia/fisiopatología , Tolerancia Inmunológica/fisiología , Hígado/metabolismo , Longevidad/genética , Longevidad/fisiología , Ratas , Análisis de Secuencia de ARN , Spalax/genética , Especificidad de la Especie , Transcriptoma/genética
18.
Bioinformatics ; 33(9): 1396-1398, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28453677

RESUMEN

Summary: DNA-based methods to detect and quantify taxon composition in biological materials are often based on species-specific polymerase chain reaction, limited to detecting species targeted by the assay. Next-generation sequencing overcomes this drawback by untargeted shotgun sequencing of whole metagenomes at affordable cost. Here we present AFS, a software pipeline for quantification of species composition in food. AFS uses metagenomic shotgun sequencing and sequence read counting to infer species proportions. Using Illumina data from a reference sausage comprising four species, we reveal that AFS is independent of the sequencing assay and library preparation protocol. Cost-saving short (50-bp) single-end reads and Nextera ® library preparation yield reliable results. Availability and Implementation: Datasets, binaries and usage instructions are available under http://all-food-seq.sourceforge.net. Raw data is available at NCBI's SRA with accession number PRJNA271645. Contact: hankeln@uni-mainz.de. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Microbiología de Alimentos/métodos , Metagenómica/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
19.
Mol Ecol ; 26(12): 3256-3275, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28316106

RESUMEN

Active transposable elements (TEs) may result in divergent genomic insertion and abundance patterns among conspecific populations. Upon secondary contact, such divergent genetic backgrounds can theoretically give rise to classical Dobzhansky-Muller incompatibilities (DMI), thus contributing to the evolution of endogenous genetic barriers and eventually causing population divergence. We investigated differential TE abundance among conspecific populations of the nonbiting midge Chironomus riparius and evaluated their potential role in causing endogenous genetic incompatibilities between these populations. We focussed on a Chironomus-specific TE, the minisatellite-like Cla-element, whose activity is associated with speciation in the genus. Using a newly generated and annotated draft genome for a genomic study with five natural C. riparius populations, we found highly population-specific TE insertion patterns with many private insertions. A significant correlation of the pairwise FST estimated from genomewide single-nucleotide polymorphisms (SNPs) and the FST estimated from TEs is consistent with drift as the major force driving TE population differentiation. However, the significantly higher Cla-element FST level due to a high proportion of differentially fixed Cla-element insertions also indicates selection against segregating (i.e. heterozygous) insertions. With reciprocal crossing experiments and fluorescent in situ hybridization of Cla-elements to polytene chromosomes, we documented phenotypic effects on female fertility and chromosomal mispairings. We propose that the inferred negative selection on heterozygous Cla-element insertions may cause endogenous genetic barriers and therefore acts as DMI among C. riparius populations. The intrinsic genomic turnover exerted by TEs may thus have a direct impact on population divergence that is operationally different from drift and local adaptation.


Asunto(s)
Chironomidae/genética , Elementos Transponibles de ADN , Genética de Población , Genoma de los Insectos , Repeticiones de Minisatélite , Animales , Evolución Molecular , Femenino , Hibridación Fluorescente in Situ , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...