Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Econ Entomol ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597635

RESUMEN

Weed management is challenging for vegetable crops that are highly sensitive to weed competition, such as onions. Thrips (Thysanoptera: Thripidae) are major insect pests of onions, causing damage through feeding, and vectoring bacterial pathogens causing bulb rot. Both thrips and their associated pathogens are known to survive on many weed species in onion growing regions. Combining weeding with biopesticides may synergistically manage thrips and reduce disease prevalence. However, disturbances from weeding may negatively impact natural enemies. We estimated the effects of organic weed management and biopesticides on weed density, thrips and natural enemy activity, disease severity, and yield. The experiment was a randomized complete block design, with 4 replications of each weeding (control, tine-weeded twice, tine-weeded 4 times, and hand-weeded) and biopesticide (control, OxiDate 2.0, Serenade) combination. Arthropods were monitored using yellow sticky cards, and weed counts, marketable yield, and bulb rot prevalence were estimated. Hand-weeding resulted in the lowest weed density and thrips abundance. Additionally, hand-weeding produced a 9× higher yield compared to all other treatments. Significant interactions were observed between tine-weeding and biopesticide treatments on the prevalence of bulb rot. Natural enemy abundance was slightly negatively impacted by weeding, dependent on the year. DNA metabarcoding results showed high parasitoid diversity in this onion system and high numbers of reads for multiple genera containing important known biological control agents. Our study suggests hand-weeding is necessary in the southeast for maximum onion yield. Future research should focus on exploring the impact of management on natural enemy communities in onion systems on a large scale.

2.
Pest Manag Sci ; 80(3): 1008-1015, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37831545

RESUMEN

BACKGROUND: Rising global temperatures are associated with emerging insect pests, reflecting earlier and longer insect activity, faster development, more generations per year and changing species' ranges. Insecticides are often the first tools available to manage these new threats. In the southeastern US, sweet potato whitefly (Bemisia tabaci) has recently become the major threat to vegetable production. We used data from a multi-year, regional whitefly monitoring network to search for climate, land use, and management correlates of whitefly activity. RESULTS: Strikingly, whiteflies were detected earlier and grew more abundant in landscapes with greater insecticide use, but only when temperatures were also relatively warm. Whitefly outbreaks in hotter conditions were not associated with specific active ingredients used to suppress whiteflies, which would be consistent with a regional disruption of biocontrol following sprays for other pests. In addition, peak whitefly detections occurred earlier in areas with more vegetable production, but later with more cotton production, consistent with whiteflies moving among crops. CONCLUSION: Altogether, our findings suggest possible links between warmer temperatures, more abundant pests, and frequent insecticide applications disrupting biological control, though this remains to be explicitly demonstrated. Climate-initiated pesticide treadmills of this type may become an increasingly common driver of emerging pest outbreaks as global change accelerates. © 2023 Society of Chemical Industry.


Asunto(s)
Hemípteros , Insecticidas , Animales , Temperatura , Insectos , Productos Agrícolas , Verduras
3.
Insects ; 14(7)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37504601

RESUMEN

In many agroecosystems, brown marmorated stink bugs (Halyomorpha halys) (Hemiptera: Pentatomidae) are polyphagous pests that cause significant economic losses to numerous crops every year. Insectivorous birds may provide a means of sustainable predation of invasive pests, such as H. halys. In forest margins surrounding peach, pecan, and interplanted peach-pecan orchards, we monitored H. halys populations with pheromone-baited traps, mist-netted birds, and collected avian fecal samples for molecular gut content analysis. We screened 257 fecal samples from 19 bird species for the presence of H. halys DNA to determine whether birds provide the biological control of this pest. Overall, we found evidence that four birds from three species consumed H. halys, including Northern cardinal (Cardinalis cardinalisis), Tufted titmouse (Baeolophus bicolor), and Carolina wren (Thryothorus ludovicianus). Halyomorpha halys captured in traps increased over time but did not vary by orchard type. Although incidence of predation was low, this may be an underestimate as a result of our current avian fecal sampling methodology. Because birds are members of the broader food web, future studies are needed to understand avian ecosystem services, especially in terms of pest control, including H. halys and other pest species.

4.
Sensors (Basel) ; 23(8)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37112469

RESUMEN

Using artificial intelligence (AI) and the IoT (Internet of Things) is a primary focus of applied engineering research to improve agricultural efficiency. This review paper summarizes the engagement of artificial intelligence models and IoT techniques in detecting, classifying, and counting cotton insect pests and corresponding beneficial insects. The effectiveness and limitations of AI and IoT techniques in various cotton agricultural settings were comprehensively reviewed. This review indicates that insects can be detected with an accuracy of between 70 and 98% using camera/microphone sensors and enhanced deep learning algorithms. However, despite the numerous pests and beneficial insects, only a few species were targeted for detection and classification by AI and IoT systems. Not surprisingly, due to the challenges of identifying immature and predatory insects, few studies have designed systems to detect and characterize them. The location of the insects, sufficient data size, concentrated insects on the image, and similarity in species appearance are major obstacles when implementing AI. Similarly, IoT is constrained by a lack of effective field distance between sensors when targeting insects according to their estimated population size. Based on this study, the number of pest species monitored by AI and IoT technologies should be increased while improving the system's detection accuracy.


Asunto(s)
Inteligencia Artificial , Gossypium , Animales , Insectos , Agricultura , Algoritmos
5.
Insects ; 13(11)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36354794

RESUMEN

Coenosia attenuata is a member of the tigrina-group of Coenosia (sensu Hennig 1964) and is a capable generalist predator in its larval and adult stages. C. attenuata is common in greenhouses worldwide, however, there are few documented cases of its presence in the wild. Here, we estimated C. attenuata presence in the southeastern USA peach orchards using pan traps. Over two years, a total of 717 specimens were collected from both commercially managed and fungicide-only managed peach orchards. C. attenuata is a known biological control agent in artificial greenhouse settings, but its impact on pest species in the wild is still unknown. For the first time in North America, we document an established wild population of C. attenuata, provide an overview of basic identification, and review potential benefits for biological control.

6.
J Invertebr Pathol ; 194: 107806, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35944664

RESUMEN

Toxicity of the metabolites of two bacteria, Photorhabdus luminescens and Xenorhabdus bovienii, symbionts of entomopathogenic nematodes, were tested in the laboratory against the multicolored Asian lady beetle, Harmonia axyridis, the black pecan aphid, Melanocallis caryaefoliae, and the blackmargined aphid, Monellia caryella. Bacterial broth prepared from both P. luminescens and X. bovienii demonstrated high levels of toxicity equivalent to the pyrethroid insecticide bifenthrin and caused higher insect mortality than tryptic soy broth plus yeast extract (TSY) (blank control) against M. caryella; broth culture of P. luminescens was more effective than TSY against M. caryaefoliae. At the levels tested, the metabolites were not toxic to H. axyridis.


Asunto(s)
Áfidos , Carya , Escarabajos , Insecticidas , Photorhabdus , Piretrinas , Xenorhabdus , Animales
7.
PLoS One ; 17(3): e0264381, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35231042

RESUMEN

The reproductive success of animals breeding in cities is often lower compared to counterparts that inhabit rural, suburban, and peri-urban areas. Urban dwelling may be especially costly for offspring development and survival. Diet composition and diversity may underlie factors that lead to lower fitness, particularly if prey abundance and quality decline in modified environments. Moreover, breeding success may change over the course of a season, an effect that may be augmented in urban areas. In this study, we tested the hypothesis that habitat and date affected nestling house wren (Troglodytes aedon) body condition and survival, and examined whether diet explained differences in nestling success. We monitored urban and rural populations of house wrens breeding in nest boxes, and tested whether clutch size, nestling survivorship, and nestling body condition varied by habitat or by date, and then characterized the diet of a subset of nestlings with DNA metabarcoding of fecal samples. Urbanization had clear impacts on house wren nestling fitness: urban broods contained fewer, smaller nestlings. Early nestling survival decreased as the breeding season progressed, and this effect was more pronounced in the urban population. However, the diets of urban and rural nestlings were similar and did not explain differences in body condition. Instead, across populations, diet changed with date, becoming less diverse, with fewer Lepidoptera and more Orthoptera. Regardless of habitat, adult house wrens provide nestlings with similar types of foods, but other factors, such as quantity or quality of prey delivered, may lead to fitness disparities between urban and rural nestlings.


Asunto(s)
Dieta , Pájaros Cantores , Animales , Ciudades , Tamaño de la Nidada , Urbanización
8.
PLoS One ; 16(11): e0260105, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34807917

RESUMEN

Polyphagous pests cause significant economic loss worldwide through feeding damage on various cash crops. However, their diets in agricultural landscapes remain largely unexplored. Pest dietary evaluation in agricultural fields is a challenging task currently approached through visual observation of plant feeding and microscopic identification of semi-digested plant material in pest's guts. While molecular gut content analysis using metabarcoding approaches using universal primers (e.g., rbcl and trnL) have been successful in evaluating polyphagous pest diet, this method is relatively costly and time-consuming. Hence, there is a need for a rapid, specific, sensitive, and cost-effective method to screen for crops in the gut of pests. This is the first study to develop plant-specific primers that target various regions of their genomes, designed using a whole plant genome sequence. We selected Verticillium wilt disease resistance protein (VE-1) and pathogenesis related protein-coding genes 1-5 (PR-1-5) as our targets and designed species-specific primers for 14 important crops in the agroecosystems. Using amplicon sizes ranging from 115 to 407 bp, we developed two multiplex primer mixes that can separate nine and five plant species per PCR reaction, respectively. These two designed primer mixes provide a rapid, sensitive and specific route for polyphagous pest dietary evaluation in agroecosystems. This work will enable future research to rapidly expand our knowledge on the diet preference and range of crops that pests consume in various agroecosystems, which will help in the redesign and development of new crop rotation regimes to minimize polyphagous pest pressure and damage on crops.


Asunto(s)
Productos Agrícolas/genética , Conducta Alimentaria/fisiología , Control de Plagas/métodos , Agricultura , Análisis Costo-Beneficio , Recolección de Datos , Resistencia a la Enfermedad , Microbioma Gastrointestinal , Herbivoria/genética , Hiperfagia/genética , Hiperfagia/metabolismo , Técnicas de Amplificación de Ácido Nucleico , Plantas/genética , Reacción en Cadena de la Polimerasa , Proyectos de Investigación
9.
J Econ Entomol ; 114(4): 1480-1488, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34260688

RESUMEN

In blueberry crops, there are multiple pest species, and some of those can be suppressed by natural enemies including parasitoid wasps and predators. Parasitoid wasps occur within the environment often tracking pest species for food resources to complete their lifecycle. These small wasps are also sensitive to agricultural environments including agrichemicals, habitat availability, and climate. We investigated how the structure of parasitoid communities varied between organic and conventional blueberry systems, and how the communities of these parasitoids varied within field spatial scales (forested border vs edge vs interior). With the lower intensity of agricultural interventions occurring in organic systems and forested borders, we predicted more stable parasitoid numbers that would be insulated from predicted climate variability. In our study, parasitoids were observed in low abundance in each cropping system, with community structure dependent on both management practice and field position. Unmanaged blueberry fields and forested field borders contained more parasitoid families, and in conventional systems, we saw fewer families present in the field interior as compared to field borders. In this first study to characterize Southern parasitoid communities in blueberry production systems, we observed over 50 genera of parasitoids, with a few dominant families (Braconidae and Ichneumonidae) that would contribute to biological control in blueberry systems. Overall, we captured few parasitoids, which indicates a potential vulnerability in biological control, and the need for further research using other sampling techniques to better understand these parasitoid communities.


Asunto(s)
Arándanos Azules (Planta) , Avispas , Agricultura , Animales , Ecosistema , Sudeste de Estados Unidos
10.
Insects ; 12(4)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923556

RESUMEN

Biodiversity is an essential attribute of sustainable agroecosystems. Diverse arthropod communities deliver multiple ecosystem services, such as biological control, which are the core of integrated pest management programs. The molecular analysis of arthropod diets has emerged as a new tool to monitor and help predict the outcomes of management on the functioning of arthropod communities. Here, we briefly review the recent molecular analysis of predators and parasitoids in agricultural environments. We focus on the developments of molecular gut content analysis (MGCA) implemented to unravel the function of community members, and their roles in biological control. We examine the agricultural systems in which this tool has been applied, and at what ecological scales. Additionally, we review the use of MGCA to uncover vertebrate roles in pest management, which commonly receives less attention. Applying MGCA to understand agricultural food webs is likely to provide an indicator of how management strategies either improve food web properties (i.e., enhanced biological control), or adversely impact them.

11.
PLoS One ; 16(2): e0246855, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33592028

RESUMEN

Precision agriculture (PA) is the application of management decisions based on identifying, quantifying, and responding to space-time variability. However, knowledge of crop pest responses to within-field environmental variability, and the spatial distribution of their natural enemies, is limited. Quantitative methods providing insights on how pest-predator relationships vary within fields are potentially important tools. In this study, phloem feeders and their natural enemies, were observed over two years across 81 locations within a field of the perennial feedstock grass in Georgia, USA. Geographically weighted regression (GWR) was used to spatially correlate their abundance with environmental factors. Variables included distance to forest edge, Normalized Difference of Vegetation Index (NDVI), slope, aspect, elevation, soil particle size distribution, and weather values. GWR methods were compared with generalized linear regression methods that do not account for spatial information. Non-spatial models indicated positive relationships between phloem-feeder abundance and wind speed, but negative relationships between elevation, proportions of silt and sand, and NDVI. With data partitioned into three seasonal groups, terrain and soil variables remained significant, and natural enemies and spiders became relevant. Results from GWR indicated that magnitudes and directions of responses varied within the field, and that relationships differed among seasons. Strong negative relationships between response and explanatory factors occurred: with NDVI during mid-season; with percent silt, during mid-, and late seasons; and with spider abundance during early and late seasons. In GWR models, slope, elevation, and aspect were mostly positive indicating further that associations with elevation depended on whether models incorporated spatial information or not. By using spatially explicit models, the analysis provided a complex, nuanced understanding of within-field relationships between phloem feeders and environmental covariates. This approach provides an opportunity to learn about the variability within agricultural fields and, with further analysis, has potential to inform and improve PA and habitat management decisions.


Asunto(s)
Productos Agrícolas , Herbivoria , Insectos/fisiología , Modelos Biológicos , Poaceae , Agricultura , Animales , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/parasitología , Georgia , Poaceae/crecimiento & desarrollo , Poaceae/parasitología
12.
Insects ; 11(11)2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33238485

RESUMEN

The whitefly, Bemisia tabaci, has developed resistance to many insecticides, renewing interest in the biological control of this global pest. Generalist predators might contribute to whitefly suppression if they commonly occur in infested fields and generally complement rather than interfere with specialized natural enemies. Here, we review literature from the last 20 years, across US cropping systems, which considers the impacts of generalist predators on B. tabaci. Laboratory feeding trials and molecular gut content analysis suggest that at least 30 different generalist predator species willingly and/or regularly feed on these whiteflies. Nine of these predators appear to be particularly impactful, and a higher abundance of a few of these predator species has been shown to correlate with greater B. tabaci predation in the field. Predator species often occupy complementary feeding niches, which would be expected to strengthen biocontrol, although intraguild predation is also common and might be disruptive. Overall, our review suggests that a bio-diverse community of generalist predators commonly attacks B. tabaci, with the potential to exert substantial control in the field. The key challenge will be to develop reduced-spray plans so that generalist predators, and other more specialized natural enemies, are abundant enough that their biocontrol potential is realized.

13.
Ecol Evol ; 10(11): 4762-4772, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32551059

RESUMEN

Plant-animal interactions are diverse and widespread shaping ecology, evolution, and biodiversity of most ecological communities. Carnivorous plants are unusual in that they can be simultaneously engaged with animals in multiple mutualistic and antagonistic interactions including reversed plant-animal interactions where they are the predator. Competition with animals is a potential antagonistic plant-animal interaction unique to carnivorous plants when they and animal predators consume the same prey.The goal of this field study was to test the hypothesis that under natural conditions, sundews and spiders are predators consuming the same prey thus creating an environment where interkingdom competition can occur.Over 12 months, we collected data on 15 dates in the only protected Highland Rim Wet Meadow Ecosystem in Kentucky where sundews, sheet-web spiders, and ground-running spiders co-exist. One each sampling day, we attempted to locate fifteen sites with: (a) both sheet-web spiders and sundews; (b) sundews only; and (c) where neither occurred. Sticky traps were set at each of these sites to determine prey (springtails) activity-density. Ground-running spiders were collected on sampling days. DNA extraction was performed on all spiders to determine which individuals had eaten springtails and comparing this to the density of sundews where the spiders were captured.Sundews and spiders consumed springtails. Springtail activity-densities were lower, the higher the density of sundews. Both sheet-web and ground-running spiders were found less often where sundew densities were high. Sheet-web size was smaller where sundew densities were high.The results of this study suggest that asymmetrical exploitative competition occurs between sundews and spiders. Sundews appear to have a greater negative impact on spiders, where spiders probably have little impact on sundews. In this example of interkingdom competition where the asymmetry should be most extreme, amensalism where one competitor experiences no cost of interaction may be occurring.

14.
J Insect Sci ; 19(3)2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31175831

RESUMEN

An adventive aphid and novel host-parasitoid association from cultivated strawberry (Fragaria × ananessa Duch. cv. Chandler; Fragaria × ananessa Duch. cv. Camarosa) in Mississippi, USA are reported herein. The aphid, first detected in high tunnel cultivation, was found predominately on newly emerged, not fully developed leaflets of daughter plants in the Fall of 2016. By 2017, aphids and their associated mummies were observed on fully developed leaflets on mother plants of both cultivars. The aphid was identified as Aphis ruborum (Börner & Schilder) using morphology and DNA barcoding studies. In addition, DNA barcoding identified parasitoid adults emerging from aphid mummies as two cryptic species, Aphelinus varipes (Foerster) and Aphelinus albipodus Hayat and Fatima. Occurrence of A. ruborum in Mississippi represents a new state record and the eastern-most established record in the United States. The A. ruborum - A. varipes or A. albipodus host-parasitoid association is reported for the first time anywhere in the world.


Asunto(s)
Áfidos/parasitología , Interacciones Huésped-Parásitos , Avispas/fisiología , Animales , Áfidos/clasificación , Femenino , Fragaria
15.
Environ Entomol ; 47(1): 32-38, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29293975

RESUMEN

Natural enemies are valuable components of agroecosystems as they provide biological control services to help regulate pest populations. Promoting biocontrol services can improve sustainability by decreasing pesticide usage, which is a major challenge for the blueberry industry. Our research is the first to compare natural enemy populations in managed (conventional and organic) and unmanaged blueberry systems, in addition to the effects of non-crop habitat. We conducted our study in 10 blueberry orchards during the growing season across the major blueberry producing counties in Georgia, United States. To estimate the spatial distribution of natural enemies, we conducted suction sampling at three locations in each orchard: within the forested border, along the edge of blueberry orchard adjacent to forested border, and within the interior of the blueberry orchard. Natural enemies maintained higher abundance over the season in unmanaged areas when compared with organic or conventional production systems. In the conventional orchards, natural enemies were more abundant in the surrounding non-crop area compared with the interior of the orchard. Populations were more evenly distributed in less intensive systems (organic and unmanaged). Our results indicate spatial structure in natural enemy populations is related to management practice, and less intensive management can retain higher abundance of natural enemies in blueberry systems. Considerations must be made towards promoting ecologically based management practices to sustain natural enemy populations and potentially increase the delivery of biological control services.


Asunto(s)
Arándanos Azules (Planta) , Cadena Alimentaria , Insectos/fisiología , Control Biológico de Vectores , Arañas/fisiología , Animales , Arándanos Azules (Planta)/crecimiento & desarrollo , Georgia
16.
Insects ; 8(4)2017 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-28937651

RESUMEN

Marginal agricultural land provides opportunities to diversify landscapes by producing biomass for biofuel, and through floral provisioning that enhances arthropod-mediated ecosystem service delivery. We examined the effects of local spatial context (adjacent to woodland or agriculture) and irrigation (irrigation or no irrigation) on wildflower bloom and visitation by arthropods in a biofeedstocks-wildflower habitat buffer design. Twenty habitat buffer plots were established containing a subplot of Napier grass (Pennisetum perpureum Schumach) for biofeedstock, three commercial wildflower mix subplots, and a control subplot containing spontaneous weeds. Arthropods and flowers were visually observed in quadrats throughout the season. At the end of the season we measured soil nutrients and harvested Napier biomass. We found irrespective of buffer location or irrigation, pollinators were observed more frequently early in the season and on experimental plots with wildflowers than on weeds in the control plots. Natural enemies showed a tendency for being more common on plots adjacent to a wooded border, and were also more commonly observed early in the season. Herbivore visits were infrequent and not significantly influenced by experimental treatments. Napier grass yields were high and typical of first-year yields reported regionally, and were not affected by location context or irrigation. Our results suggest habitat management designs integrating bioenergy crop and floral resources provide marketable biomass and habitat for beneficial arthropods.

17.
Res Integr Peer Rev ; 2: 18, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29451536

RESUMEN

BACKGROUND: Deciphering the amount of work provided by different co-authors of a scientific paper has been a recurrent problem in science. Despite the myriad of metrics available, the scientific community still largely relies on the position in the list of authors to evaluate contributions, a metric that attributes subjective and unfounded credit to co-authors. We propose an easy to apply, universally comparable and fair metric to measure and report co-authors contribution in the scientific literature. METHODS: The proposed Author Contribution Index (ACI) is based on contribution percentages provided by the authors, preferably at the time of submission. Researchers can use ACI to compare the contributions of different authors, describe the contribution profile of a particular researcher or analyse how contribution changes through time. We provide such an analysis based on contribution percentages provided by 97 scientists from the field of ecology who voluntarily responded to an online anonymous survey. RESULTS: ACI is simple to understand and to implement because it is based solely on percentage contributions and the number of co-authors. It provides a continuous score that reflects the contribution of one author as compared to the average contribution of all other authors. For example, ACI(i) = 3, means that author i contributed three times more than what the other authors contributed on average. Our analysis comprised 836 papers published in 2014-2016 and revealed patterns of ACI values that relate to career advancement. CONCLUSION: There are many examples of author contribution indices that have been proposed but none has really been adopted by scientific journals. Many of the proposed solutions are either too complicated, not accurate enough or not comparable across articles, authors and disciplines. The author contribution index presented here addresses these three major issues and has the potential to contribute to more transparency in the science literature. If adopted by scientific journals, it could provide job seekers, recruiters and evaluating bodies with a tool to gather information that is essential to them and cannot be easily and accurately obtained otherwise. We also suggest that scientists use the index regardless of whether it is implemented by journals or not.

18.
Insects ; 7(3)2016 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-27348005

RESUMEN

Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae), plum curculio, is a serious direct pest of North American tree fruit including, apples, cherries, peaches and plums. Historically, organophosphate insecticides were used for control, but this tool is no longer registered for use in tree fruit. In addition, few organically approved insecticides are available for organic pest control and none have proven efficacy as this time. Therefore, promoting biological control in these systems is the next step, however, little is known about the biological control pathways in this system and how these are influenced by current mechanical and cultural practices required in organic systems. We used molecular gut-content analysis for testing field caught predators for feeding on plum curculio. During the study we monitored populations of plum curculio and the predator community in a production organic apple orchard. Predator populations varied over the season and contained a diverse assemblage of spiders and beetles. A total of 8% of all predators (eight Araneae, two Hemiptera, and six Coleoptera species) assayed for plum curculio predation were observed positive for the presence of plum curculio DNA in their guts, indicating that these species fed on plum curculio prior to collection Results indicate a number of biological control agents exist for this pest and this requires further study in relation to cultural practices.

20.
Mol Ecol ; 23(15): 3777-89, 2014 08.
Artículo en Inglés | MEDLINE | ID: mdl-24673741

RESUMEN

A broad range of environmental conditions likely regulate predator-prey population dynamics and impact the structure of these communities. Central to understanding the interplay between predator and prey populations and their importance is characterizing the corresponding trophic interactions. Here, we use a well-documented molecular approach to examine the structure of the community of natural enemies preying upon the squash bug, Anasa tristis, a herbivorous cucurbit pest that severely hinders organic squash and pumpkin production in the United States. Primer pairs were designed to examine the effects of organic management practices on the strength of these trophic connections and link this metric to measures of the arthropod predator complex density and diversity within an experimental open-field context. Replicated plots of butternut squash were randomly assigned to three treatments and were sampled throughout a growing season. Row-cover treatments had significant negative effects on squash bug and predator communities. In total, 640 predators were tested for squash bug molecular gut-content, of which 11% were found to have preyed on squash bugs, but predation varied over the season between predator groups (coccinellids, geocorids, nabids, web-building spiders and hunting spiders). Through the linking of molecular gut-content analysis to changes in diversity and abundance, these data delineate the complexity of interaction pathways on a pest that limits the profitability of organic squash production.


Asunto(s)
Cadena Alimentaria , Heterópteros , Agricultura Orgánica/métodos , Control Biológico de Vectores/métodos , Animales , Cucurbita , Cartilla de ADN , Insectos , Datos de Secuencia Molecular , Conducta Predatoria , Análisis de Secuencia de ADN , Especificidad de la Especie , Arañas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...