Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-33545344

RESUMEN

In teleost fish, radial glial cells (RGCs) are progenitor cells for neurons and the major cell type synthesizing neuroestrogens. We hypothesized that chemical exposure impairs mitochondrial bioenergetics of RGCs, which then may lead to downstream consequences for neuroestrogen production. Here we provide proof of concept that mitochondria of RGCs can be perturbed by fungicides. We isolated RGCs from a mixed sex population of goldfish (Carassius auratus) and measured metabolic capacity of primary cells to a model mitotoxin fluazinam, a broad-spectrum fungicide that inhibits mitochondria electron transport chain (or ETC) Complex I. Using immunocytochemistry and real-time PCR, we demonstrate that the goldfish primary cell cultures are highly enriched for glia after multiple passages. Cytotoxicity assays revealed that glia treated with >25 µM fluazinam for 24 and 48-h showed reduced viability. As such, metabolic assays were conducted with non-cytotoxic concentrations (0.25-12.5 µM). Fluazinam did not affect oxygen consumption rates of RGCs at 24 h, but after 48 h, oligomycin induced ATP-linked respiration was decreased by both 6.25 and 12.5 µM fluazinam. Moreover, concentrations as low as 0.25 µM disrupted the mitochondrial membrane potential of RGCs, reflecting strong uncoupling effects of the fungicide on mitochondria. Here we provide proof of concept that mitochondrial bioenergetics of teleostean RGCs can be responsive to agrochemicals. Additional studies are required to address low-dose exposures in vivo and to determine if metabolic disruption impairs neuroendocrine functions of RGCs. We propose this mechanism constitutes a novel aspect of neuroendocrine disruption, significant because dysregulation of neuron-glia communication is expected to contribute to neuroendocrine disruption.


Asunto(s)
Aminopiridinas/toxicidad , Fungicidas Industriales/toxicidad , Mitocondrias/efectos de los fármacos , Neuroglía/efectos de los fármacos , Sistemas Neurosecretores/efectos de los fármacos , Animales , Células Cultivadas , Femenino , Carpa Dorada , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos
2.
Environ Pollut ; 268(Pt B): 115715, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33069042

RESUMEN

Dietary exposure to chemicals alters the diversity of microbiome communities and can lead to pathophysiological changes in the gastrointestinal system. The organochlorine pesticide dieldrin is a persistent environmental contaminant that bioaccumulates in fatty tissue of aquatic organisms. The objectives of this study were to determine whether environmentally-relevant doses of dieldrin altered gastrointestinal morphology and the microbiome of zebrafish. Adult zebrafish at ∼4 months of age were fed a measured amount of feed containing either a solvent control or one of two doses of dieldrin (measured at 16, and 163.5 ng/g dry weight) for 4 months. Dieldrin body burden levels in zebrafish after four-month exposure were 0 (control), 11.47 ± 1.13 ng/g (low dose) and 18.32 ± 1.32 ng/g (high dose) wet weight [mean ± std]. Extensive histopathology at the whole organism level revealed that dieldrin exposure did not induce notable tissue pathology, including the gastrointestinal tract. A repeated measure mixed model analysis revealed that, while fish gained weight over time, there were no dieldrin-specific effects on body weight. Fecal content was collected from the gastrointestinal tract of males and 16S rRNA gene sequencing conducted. Dieldrin at a measured feed dose of 16 ng/g reduced the abundance of Firmicutes, a phylum involved in energy resorption. At the level of class, there was a decrease in abundance of Clostridia and Betaproteobacteria, and an increase in Verrucomicrobiae species. We used a computational approach called predicted relative metabolomic turnover (PRMT) to predict how a shift in microbial community composition affects exchange of metabolites. Dieldrin was predicted to affect metabolic turnover of uroporphyrinogen I and coproporphyrinogen I [enzyme]-cysteine, hydrogen selenide, selenite, and methyl-selenic acid in the fish gastrointestinal system. These pathways are related to bacterial heme biosynthesis and selenium metabolism. Our study demonstrates that dietary exposures to dieldrin can alter microbiota composition over 4 months, however the long-term consequences of such impacts are not well understood.


Asunto(s)
Microbiota , Selenio , Animales , Dieldrín/toxicidad , Tracto Gastrointestinal , Hemo , Masculino , ARN Ribosómico 16S , Pez Cebra
3.
Physiol Rep ; 6(14): e13732, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30039527

RESUMEN

Neurons and glia exhibit metabolic imbalances in hypertensive animal models, and loss of metabolic homeostasis can lead to neuroinflammation and oxidative stress. The objective of this study was to determine the effects of the microbial metabolite butyrate on mitochondrial bioenergetics and inflammatory markers in mixed brainstem and hypothalamic primary cultures of astrocytes between normotensive (Sprague-Dawley, S-D) and spontaneously hypertensive (SHR) rats. Bioenergetics of mitochondria in astrocytes from normotensive S-D rats were modified with butyrate, but this was not the case in astrocytes derived from SHR, suggesting aberrant mitochondrial function. Transcripts related to oxidative stress, butyrate transporters, butyrate metabolism, and neuroinflammation were quantified in astrocyte cultures treated with butyrate at 0, 200, 600, and 1000 µmol/L. Butyrate decreased catalase and monocarboxylate transporter 1 mRNA in astrocytes of S-D rats but not in the SHR. Moreover, while butyrate did not directly regulate the expression of 3-hydroxybutyrate dehydrogenase 1 and 2 in astrocytes of either strain, the expression levels for these transcripts in untreated cultures were lower in the SHR compared to S-D. We observed higher levels of specific inflammatory cytokines in astrocytes of SHR, and treatment with butyrate decreased expression of Ccl2 and Tlr4 in SHR astrocytes only. Conversely, butyrate treatment increased expression of tumor necrosis factor in astrocytes from SHR but not from the S-D rats. This study improves our understanding of the role of microbial metabolites in regulating astrocyte function, and provides support that butyrate differentially regulates both the bioenergetics and transcripts related to neuroinflammation in astrocytes from SHR versus S-D rats.


Asunto(s)
Astrocitos/metabolismo , Butiratos/farmacología , Quimiocina CCL2/metabolismo , Hipertensión/metabolismo , Animales , Astrocitos/efectos de los fármacos , Respiración de la Célula , Células Cultivadas , Quimiocina CCL2/genética , Femenino , Hidroxibutirato Deshidrogenasa/genética , Hidroxibutirato Deshidrogenasa/metabolismo , Masculino , Fosforilación Oxidativa , Ratas , Ratas Endogámicas SHR , Ratas Sprague-Dawley , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
4.
Neurotoxicology ; 63: 1-12, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28844784

RESUMEN

Mitochondria are sensitive targets of environmental chemicals. Dieldrin (DLD) is an organochlorine pesticide that remains a human health concern due to high lipid bioaccumulation, and it has been epidemiologically associated to an increased risk for Parkinson's disease (PD). As mitochondrial dysfunction is involved in the etiology of PD, this study aimed to determine whether DLD impaired mitochondrial bioenergetics in dopaminergic cells. Rat immortalized dopaminergic N27 cells were treated for 24 or 48h with one dose of either a solvent control, 2.5, 25, or 250µM DLD. Dopaminergic cells treated with 250µM DLD showed increased Casp3/7 activity at 24 and 48h. DLD also caused a dose dependent reduction in cell viability of ∼25-30% over 24h. No significant effects on cell viability, apoptosis, nor cytotoxicity were detected at 24 or 48h with 2.5µM DLD. Following a 24h exposure to 2.5 and 25µM DLD, viable cells were subjected to a mitochondrial stress test using the Seahorse XFe24 Extracellular Flux Analyzer. Following three independent experiments conducted for rigor, dopaminergic cells that were treated with 2.5 and 25µM DLD consistently showed a reduction in maximum respiration and spare capacity compared to the control group. Molecular responses were measured to determine mechanisms of DLD-induced mitochondrial dysfunction. There were no changes in transcripts associated with mitochondrial membrane potential and permeability (e.g. Ant, Hk1, Tspo, Vdac), nor PI3 K/Akt/mTor signaling or mitochondrial-associated apoptotic factors (Bax, Bcl2, Casp3). However, transcript levels for Chop/Gadd153 (DNA Damage Inducible Transcript 3), an apoptotic gene activated following endoplasmic reticulum (ER) stress, were 3-fold higher in N27 cells treated with DLD, suggesting that DLD-induced mitochondrial dysfunction is related to ER stress. Dopamine cells were also assessed for changes in tyrosine hydroxylase (TH) protein, which did not differ among treatments. This study demonstrates that DLD impairs oxidative respiration in dopamine cells, and ER stress is hypothesized to be associated with the DLD-induced mitochondrial dysfunction. This is important as ER stress is also linked to PD. This study presents mechanistic insight into pesticide-induced mitochondrial dysfunction using a chemical that is reported to be associated to a higher risk for neurodegenerative disease.


Asunto(s)
Dieldrín/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Neurotoxinas/farmacología , Adenosina Trifosfato/metabolismo , Animales , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Línea Celular Transformada , Supervivencia Celular/efectos de los fármacos , Neuronas Dopaminérgicas/ultraestructura , Inhibidores Enzimáticos/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mesencéfalo/citología , Oligomicinas/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
5.
Front Physiol ; 8: 220, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28446880

RESUMEN

The brain-gut axis plays a critical role in the regulation of different diseases, many of which are characterized by sympathetic dysregulation. However, a direct link between sympathetic dysregulation and gut dysbiosis remains to be illustrated. Bone marrow (BM)-derived immune cells continuously interact with the gut microbiota to maintain homeostasis in the host. Their function is largely dependent upon the sympathetic nervous system acting via adrenergic receptors present on the BM immune cells. In this study, we utilized a novel chimera mouse that lacks the expression of BM beta1/2 adrenergic receptors (b1/2-ARs) to investigate the role of the sympathetic drive to the BM in gut and microbiota homeostasis. Fecal analyses demonstrated a shift from a dominance of Firmicutes to Bacteroidetes phylum in the b1/2-ARs KO chimera, resulting in a reduction in Firmicutes/Bacteroidetes ratio. Meanwhile, a significant reduction in Proteobacteria phylum was determined. No changes in the abundance of acetate-, butyrate-, and lactate-producing bacteria, and colon pathology were observed in the b1/2-ARs KO chimera. Transcriptomic profiling in colon identified Killer Cell Lectin-Like Receptor Subfamily D, Member 1 (Klrd1), Membrane-Spanning 4-Domains Subfamily A Member 4A (Ms4a4b), and Casein Kinase 2 Alpha Prime Polypeptide (Csnk2a2) as main transcripts associated with the microbiota shifts in the b1/2-ARs KO chimera. Suppression of leukocyte-related transcriptome networks (i.e., function, differentiation, migration), classical compliment pathway, and networks associated with intestinal function, barrier integrity, and excretion was also observed in the colon of the KO chimera. Moreover, reduced expression of transcriptional networks related to intestinal diseases (i.e., ileitis, enteritis, inflammatory lesions, and stress) was noted. The observed suppressed transcriptome networks were associated with a reduction in NK cells, macrophages, and CD4+ T cells in the b1/2-ARs KO chimera colon. Thus, sympathetic regulation of BM-derived immune cells plays a significant role in modifying inflammatory networks in the colon and the gut microbiota composition. To our knowledge, this study is the first to suggest a key role of BM b1/2-ARs signaling in host-microbiota interactions, and reveals specific molecular mechanisms that may lead to generation of novel anti-inflammatory treatments for many immune and autonomic diseases as well as gut dysbiosis across the board.

6.
Physiol Genomics ; 48(7): 526-36, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27235450

RESUMEN

Hypertension (HTN) is a prevalent condition with complex etiology and pathophysiology. Evidence exists of significant communication between the nervous system and the immune system (IS), and there appears to be a direct role for inflammatory bone marrow (BM) cells in the pathophysiology of hypertension. However, the molecular and neural mechanisms underlying this interaction have not been characterized. Here, we transplanted whole BM cells from the beta 1 and 2 adrenergic receptor (AdrB1(tm1Bkk)AdrB2(tm1Bkk)/J) knockout (KO) mice into near lethally irradiated C57BL/6J mice to generate a BM AdrB1.B2 KO chimera. This allowed us to evaluate the role of the BM beta 1 and beta 2 adrenergic receptors in mediating BM IS homeostasis and regulating blood pressure (BP) in an otherwise intact physiological setting. Fluorescence-activated cell sorting demonstrated that a decrease in systolic and mean BP in the AdrB1.B2 KO chimera is associated with a decrease in circulating inflammatory T cells, macrophage/monocytes, and neutrophils. Transcriptomics in the BM identified 7,419 differentially expressed transcripts between the C57 and AdrB1.B2 KO chimera. Pathway analysis revealed differentially expressed transcripts related to several cell processes in the BM of C57 compared with AdrB1.B2 KO chimera, including processes related to immunity (e.g., T-cell activation, T-cell recruitment, cytokine production, leukocyte migration and function), the cardiovascular system (e.g., blood vessel development, peripheral nerve blood flow), and the brain (e.g., central nervous system development, neurite development) among others. This study generates new insight into the molecular events that underlie the interaction between the sympathetic drive and IS in modulation of BP.


Asunto(s)
Presión Sanguínea/genética , Médula Ósea/metabolismo , Redes Reguladoras de Genes/genética , Inflamación/genética , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 2/genética , Transcripción Genética/genética , Animales , Células de la Médula Ósea/metabolismo , Trasplante de Médula Ósea/métodos , Modelos Animales de Enfermedad , Hipertensión/genética , Hipertensión/metabolismo , Inflamación/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/metabolismo , Neutrófilos/metabolismo
7.
ASN Neuro ; 5(5): e00128, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24175617

RESUMEN

Charcot-Marie-Tooth disease type 1A (CMT1A) is a hereditary demyelinating neuropathy linked with duplication of the peripheral myelin protein 22 (PMP22) gene. Transgenic C22 mice, a model of CMT1A, display many features of the human disease, including slowed nerve conduction velocity and demyelination of peripheral nerves. How overproduction of PMP22 leads to compromised myelin and axonal pathology is not fully understood, but likely involves subcellular alterations in protein homoeostatic mechanisms within affected Schwann cells. The subcellular response to abnormally localized PMP22 includes the recruitment of the ubiquitin-proteasome system (UPS), autophagosomes and heat-shock proteins (HSPs). Here we assessed biochemical markers of these protein homoeostatic pathways in nerves from PMP22-overexpressing neuropathic mice between the ages of 2 and 12 months to ascertain their potential contribution to disease progression. In nerves of 3-week-old mice, using endoglycosidases and Western blotting, we found altered processing of the exogenous human PMP22, an abnormality that becomes more prevalent with age. Along with the ongoing accrual of misfolded PMP22, the activity of the proteasome becomes compromised and proteins required for autophagy induction and lysosome biogenesis are up-regulated. Moreover, cytosolic chaperones are consistently elevated in nerves from neuropathic mice, with the most prominent change in HSP70. The gradual alterations in protein homoeostatic response are accompanied by Schwann cell de-differentiation and macrophage infiltration. Together, these results show that while subcellular protein quality control mechanisms respond appropriately to the presence of the overproduced PMP22, with aging they are unable to prevent the accrual of misfolded proteins.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Progresión de la Enfermedad , Regulación de la Expresión Génica/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de la Mielina/genética , Factores de Edad , Animales , Autofagia/genética , Antígeno CD11b/metabolismo , Chaperoninas/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , Modelos Animales de Enfermedad , Proteínas HSP70 de Choque Térmico/genética , Humanos , Macrófagos/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de la Mielina/metabolismo , Infiltración Neutrófila/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas/metabolismo , Células de Schwann/patología , Nervio Ciático/metabolismo , Nervio Ciático/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...