Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(14): 9880-9887, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38536667

RESUMEN

Small molecule structures and their applications rely on good knowledge of their atomic arrangements. However, the crystal structures of these compounds and materials, which are often composed of fine crystalline domains, cannot be determined with single-crystal X-ray diffraction. Three-dimensional electron diffraction (3D ED) is already becoming a reliable method for the structure analysis of submicrometer-sized organic materials. The reduction of electron beam damage is essential for successful structure determination and often prevents the analysis of organic materials at room temperature, not to mention high temperature studies. In this work, we apply advanced 3D ED methods at different temperatures enabling the accurate structure determination of two phases of Pigment Orange 34 (C34H28N8O2Cl2), a biphenyl pyrazolone pigment that has been industrially produced for more than 80 years and used for plastics application. The crystal structure of the high-temperature phase, which can be formed during plastic coloration, was determined at 220 °C. For the first time, we were able to observe a reversible phase transition in an industrial organic pigment in the solid state, even with atomic resolution, despite crystallites being submicrometer in size. By localizing hydrogen atoms, we were even able to detect the tautomeric state of the molecules at different temperatures. This demonstrates that precise, fast, and low-dose 3D ED measurements enable high-temperature studies the door for general in situ studies of nanocrystalline materials at the atomic level.

2.
IUCrJ ; 10(Pt 4): 448-463, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37335768

RESUMEN

Leucopterin (C6H5N5O3) is the white pigment in the wings of Pieris brassicae butterflies, and other butterflies; it can also be found in wasps and other insects. Its crystal structure and its tautomeric form in the solid state were hitherto unknown. Leucopterin turned out to be a variable hydrate, with 0.5 to about 0.1 molecules of water per leucopterin molecule. Under ambient conditions, the preferred state is the hemihydrate. Initially, all attempts to grow single crystals suitable for X-ray diffraction were to no avail. Attempts to determine the crystal structure by powder diffraction using the direct-space method failed, because the trials did not include the correct, but rare, space group P2/c. Attempts were made to solve the crystal structure by a global fit to the pair distribution function (PDF-Global-Fit), as described by Prill and co-workers [Schlesinger et al. (2021). J. Appl. Cryst. 54, 776-786]. The approach worked well, but the correct structure was not found, because again the correct space group was not included. Finally, tiny single crystals of the hemihydrate could be obtained, which allowed at least the determination of the crystal symmetry and the positions of the C, N and O atoms. The tautomeric state of the hemihydrate was assessed by multinuclear solid-state NMR spectroscopy. 15N CPMAS spectra showed the presence of one NH2 and three NH groups, and one unprotonated N atom, which agreed with the 1H MAS and 13C CPMAS spectra. Independently, the tautomeric state was investigated by lattice-energy minimizations with dispersion-corrected density functional theory (DFT-D) on 17 different possible tautomers, which also included the prediction of the corresponding 1H, 13C and 15N chemical shifts in the solid. All methods showed the presence of the 2-amino-3,5,8-H tautomer. The DFT-D calculations also confirmed the crystal structure. Heating of the hemihydrate results in a slow release of water between 130 and 250 °C, as shown by differential thermal analysis and thermogravimetry (DTA-TG). Temperature-dependent powder X-ray diffraction (PXRD) showed an irreversible continuous shift of the reflections upon heating, which reveals that leucopterin is a variable hydrate. This observation was also confirmed by PXRD of samples obtained under various synthetic and drying conditions. The crystal structure of a sample with about 0.2 molecules of water per leucopterin was solved by a fit with deviating lattice parameters (FIDEL), as described by Habermehl et al. [Acta Cryst. (2022), B78, 195-213]. A local fit, starting from the structure of the hemihydrate, as well as a global fit, starting from random structures, were performed, followed by Rietveld refinements. Despite dehydration, the space group remains P2/c. In both structures (hemihydrate and variable hydrate), the leucopterin molecules are connected by 2-4 hydrogen bonds into chains, which are connected by further hydrogen bonds to neighbouring chains. The molecular packing is very efficient. The density of leucopterin hemihydrate is as high as 1.909 kg dm-3, which is one of the highest densities for organic compounds consisting of C, H, N and O only. The high density might explain the good light-scattering and opacity properties of the wings of Pieris brassicae and other butterflies.


Asunto(s)
Mariposas Diurnas , Animales , Análisis de los Mínimos Cuadrados , Espectroscopía de Resonancia Magnética , Agua/química
3.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 79(Pt 2): 122-137, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36920875

RESUMEN

The crystallographic study of two polymorphs of the industrial pyrazolone Pigment Orange 13 (P.O.13) is reported. The crystal structure of the ß phase was determined using single-crystal X-ray analysis of a tiny needle. The α phase was investigated using three-dimensional electron diffraction. The electron diffraction data contain sharp Bragg reflections and strong diffuse streaks, associated with severe stacking disorder. The structure was solved by careful analysis of the diffuse scattering, and similarities of the unit-cell parameters with the ß phase. The structure solution is described in detail and this provides a didactic example of solving molecular crystal structures in the presence of diffuse scattering. Several structural models were constructed and optimized by lattice-energy minimization with dispersion-corrected DFT. A four-layer model was found, which matches the electron diffraction data, including the diffuse scattering, and agrees with X-ray powder data. Additionally, five further phases of P.O.13 are described.

4.
IUCrJ ; 9(Pt 4): 406-424, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35844476

RESUMEN

Four different structural models, which all fit the same X-ray powder pattern, were obtained in the structure determination of 4,11-di-fluoro-quinacridone (C20H10N2O2F2) from unindexed X-ray powder data by a global fit. The models differ in their lattice parameters, space groups, Z, Z', molecular packing and hydrogen bond patterns. The molecules form a criss-cross pattern in models A and B, a layer structure built from chains in model C and a criss-cross arrangement of dimers in model D. Nevertheless, all models give a good Rietveld fit to the experimental powder pattern with acceptable R-values. All molecular geometries are reliable, except for model D, which is slightly distorted. All structures are crystallochemically plausible, concerning density, hydrogen bonds, intermolecular distances etc. All models passed the checkCIF test without major problems; only in model A a missed symmetry was detected. All structures could have probably been published, although 3 of the 4 structures were wrong. The investigation, which of the four structures is actually the correct one, was challenging. Six methods were used: (1) Rietveld refinements, (2) fit of the crystal structures to the pair distribution function (PDF) including the refinement of lattice parameters and atomic coordinates, (3) evaluation of the colour, (4) lattice-energy minimizations with force fields, (5) lattice-energy minimizations by two dispersion-corrected density functional theory methods, and (6) multinuclear CPMAS solid-state NMR spectroscopy (1H, 13C, 19F) including the comparison of calculated and experimental chemical shifts. All in all, model B (perhaps with some disorder) can probably be considered to be the correct one. This work shows that a structure determination from limited-quality powder data may result in totally different structural models, which all may be correct or wrong, even if they are chemically sensible and give a good Rietveld refinement. Additionally, the work is an excellent example that the refinement of an organic crystal structure can be successfully performed by a fit to the PDF, and the combination of computed and experimental solid-state NMR chemical shifts can provide further information for the selection of the most reliable structure among several possibilities.

5.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 78(Pt 2): 195-213, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35411858

RESUMEN

A method of ab initio crystal structure determination from powder diffraction data for organic and metal-organic compounds, which does not require prior indexing of the powder pattern, has been developed. Only a reasonable molecular geometry is required, needing knowledge of neither unit-cell parameters nor space group. The structures are solved from scratch by a global fit to the powder data using the new program FIDEL-GO (`FIt with DEviating Lattice parameters - Global Optimization'). FIDEL-GO uses a similarity measure based on cross-correlation functions, which allows the comparison of simulated and experimental powder data even if the unit-cell parameters deviate strongly. The optimization starts from large sets of random structures in various space groups. The unit-cell parameters, molecular position and orientation, and selected internal degrees of freedom are fitted simultaneously to the powder pattern. The optimization proceeds in an elaborate multi-step procedure with built-in clustering of duplicate structures and iterative adaptation of parameter ranges. The best structures are selected for an automatic Rietveld refinement. Finally, a user-controlled Rietveld refinement is performed. The procedure aims for the analysis of a wide range of `problematic' powder patterns, in particular powders of low crystallinity. The method can also be used for the clustering and screening of a large number of possible structure candidates and other application scenarios. Examples are presented for structure determination from unindexed powder data of the previously unknown structures of the nanocrystalline phases of 4,11-difluoro-, 2,9-dichloro- and 2,9-dichloro-6,13-dihydro-quinacridone, which were solved from powder patterns with 14-20 peaks only, and of the coordination polymer dichloro-bis(pyridine-N)copper(II).


Asunto(s)
Cobre , Polímeros , Difracción de Polvo , Polvos
6.
Chemistry ; 28(6): e202103589, 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-34962330

RESUMEN

Among all possible NMR crystallography approaches for crystal-structure determination, crystal structure prediction - NMR crystallography (CSP-NMRX) has recently turned out to be a powerful method. In the latter, the original procedure exploited solid-state NMR (SSNMR) information during the final steps of the prediction. In particular, it used the comparison of computed and experimental chemical shifts for the selection of the correct crystal packing. Still, the prediction procedure, generally carried out with DFT methods, may require important computational resources and be quite time-consuming, especially if there are no available constraints to use at the initial stage. Herein, the successful application of this combined prediction method, which exploits NMR information also in the input step to reduce the search space of the predictive algorithm, is presented. Herein, this method was applied on mebendazole, which is characterized by desmotropism. The use of SSNMR data as constraints for the selection of the right tautomer and the determination of the number of independent molecules in the unit cell led to a considerably faster process, reducing the number of calculations to be performed. In this way, the crystal packing was successfully predicted for the three known phases of mebendazole. To evaluate the quality of the predicted structures, these were compared to the experimental ones. The crystal structure of phase B of mebendazole, in particular, was determined de novo by powder diffraction and is presented for the first time in this paper.


Asunto(s)
Imagen por Resonancia Magnética , Mebendazol , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Modelos Moleculares
7.
Acta Crystallogr E Crystallogr Commun ; 77(Pt 4): 402-405, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33936765

RESUMEN

Pigment Red 52, Na2[C18H11ClN2O6S], is an industrially produced hydrazone-laked pigment. It serves as an inter-mediate in the synthesis of the corresponding Ca2+ and Mn2+ salts, which are used commercially for printing inks and lacquers. Hitherto, no crystal structure of any salt of Pigment Red 52 is known. Now, single crystals have been obtained of a dimethyl sulfoxide solvate hydrate of the monosodium salt of Pigment Red 52, namely, monosodium 2-[2-(3-carb-oxy-2-oxo-1,2-di-hydro-naphthalen-1-yl-idene)hydrazin-1-yl]-5-chloro-4-methyl-benz-ene-sulfonate dimethyl sulfoxide monosolvate monohydrate, Na+·C18H12ClN2O6S-·H2O·C2H6OS, obtained from in-house synthesized Pigment Red 52. The crystal structure was determined by single-crystal X-ray diffraction at 173 K. In this monosodium salt, the SO3 - group is deprotonated, whereas the COOH group is protonated. The residues form chains via ionic inter-actions and hydrogen bonds. The chains are arranged in polar/non-polar double layers.

8.
Eur J Pharm Biopharm ; 160: 23-34, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33484866

RESUMEN

Over the last 30 years, hot melt extrusion has become a leading technology in the manufacture of amorphous drug delivery systems. Mostly applied as an 'enabling formulation' for poorly soluble compounds, application in the design of sustained-release formulations increasingly attracts the attention of the pharmaceutical industry. The drug candidate TMP-001 is currently under evaluation for the early treatment of Multiple Sclerosis. Although this weak acid falls into class II of the Biopharmaceutics Classification System, the compound exhibits high solubility in the upper intestine resulting in high peroral bioavailability. In the present studies, four different formulation prototypes varying in their sustained-release behavior were developed, using L-arginine as a pore-forming agent in concentrations ranging between 0 and 20%. Initially, biorelevant release testing was applied to assess the dissolution behavior of the prototypes. For these formulations, a total drug release of 44.7%, 64.6%, 75%, and 90.5% was achieved in FaSSIF-v2 after 24 h. Two candidates were selected for further characterization considering the crystal structure and the physical stability of the amorphous state of TMP-001 in the formulations together with the release behavior in Level II biorelevant media. Our findings indicate L-arginine as a valuable excipient in the formulation of hot melt extrudates, as its presence led to a considerable stabilization of the amorphous state and favorably impacted the milling process and release behavior of TMP-001. To properly evaluate the proposed formulations and the importance of colonic dissolution and absorption on the overall bioavailability, a physiologically-based biopharmaceutics model was used.


Asunto(s)
Composición de Medicamentos/métodos , Excipientes/química , Flurbiprofeno/farmacocinética , Modelos Biológicos , Administración Oral , Arginina/química , Disponibilidad Biológica , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Liberación de Fármacos , Estabilidad de Medicamentos , Flurbiprofeno/administración & dosificación , Flurbiprofeno/química , Humanos , Esclerosis Múltiple/tratamiento farmacológico , Ácidos Polimetacrílicos/química , Solubilidad , Difracción de Rayos X
9.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 3): 353-365, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32831256

RESUMEN

The crystal structure of the organic pigment 2-monomethyl-quinacridone (Pigment Red 192, C21H14N2O2) was solved from X-ray powder diffraction data. The resulting average structure is described in space group P\overline 1, Z = 1 with the molecule on the inversion centre. The molecules are arranged in chains. The molecules, which have no inversion symmetry, show orientational head-to-tail disorder. In the average structure, the methyl group is disordered and found on both ends of the molecule with an occupancy of 0.5 each. The disorder and the local structure were investigated using various ordered structural models. All models were analysed by three approaches: Rietveld refinement, structure refinement to the pair distribution function (PDF) and lattice-energy minimization. All refinements converged well. The Rietveld refinement provided the average structure and gave no indication of a long-range ordering. The refinement to the PDF turned out to be very sensitive to small structural details, giving insight into the local structure. The lattice-energy minimizations revealed a significantly preferred local ordering of neighbouring molecules along the [0\bar 11] direction. In conclusion, all methods indicate a statistical orientational disorder with a preferred parallel orientation of molecules in one direction. Additionally, electron diffraction revealed twinning and faint diffuse scattering.

10.
Chem Commun (Camb) ; 56(24): 3520-3523, 2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32101200

RESUMEN

As early as 1837, Liebig synthesised solid C2H5ONa. Today, C2H5ONa is one of the standard bases in organic synthesis. Here, we report the identification of different solid phases and the crystal structures and phase transformations of C2H5ONa and C2H5ONa·2C2H5OH.

11.
Chem Commun (Camb) ; 54(76): 10734-10737, 2018 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-30191221

RESUMEN

Donor-unsupported iso-butyllithium consists of hexamers with an ordered triclinic structure at -80 °C (α-phase). At ambient temperature, the compound exists as an orthorhombic, remarkably stable, plastic-crystalline γ-phase, which is built by disordered hexamers adopting a distorted face-centred cubic packing. Both structures were determined by X-ray powder diffraction. Additionally, an intermediate ß-phase is observed.

12.
Angew Chem Int Ed Engl ; 57(29): 9150-9153, 2018 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-29409149

RESUMEN

The absolute configuration of active pharmaceutical ingredients (APIs) was determined by generating salts of the active pharmaceutical ingredient (API) with counterions of known chirality, and determining the crystal structures by X-ray powder diffraction. This approach avoids the (often tedious) growth of single crystals, and is successful with very limited quantities of material (less than 1 mg). The feasibility of the method is demonstrated on five examples, and its limitations are discussed as well.


Asunto(s)
Preparaciones Farmacéuticas/química , Modelos Moleculares , Conformación Molecular , Preparaciones Farmacéuticas/síntesis química , Difracción de Polvo , Rayos X
13.
Nat Chem ; 9(10): 977-982, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28937678

RESUMEN

Crystalline frameworks composed of hexacoordinate silicon species have thus far only been observed in a few high pressure silicate phases. By implementing reversible Si-O chemistry for the crystallization of covalent organic frameworks, we demonstrate the simple one-pot synthesis of silicate organic frameworks based on octahedral dianionic SiO6 building units. Clear evidence of the hexacoordinate environment around the silicon atoms is given by 29Si nuclear magnetic resonance analysis. Characterization by high-resolution powder X-ray diffraction, density functional theory calculation and analysis of the pair-distribution function showed that those anionic frameworks-M2[Si(C16H10O4)1.5], where M = Li, Na, K and C16H10O4 is 9,10-dimethylanthracene-2,3,6,7-tetraolate-crystallize as two-dimensional hexagonal layers stabilized in a fully eclipsed stacking arrangement with pronounced disorder in the stacking direction. Permanent microporosity with high surface area (up to 1,276 m2 g-1) was evidenced by gas-sorption measurements. The negatively charged backbone balanced with extra-framework cations and the permanent microporosity are characteristics that are shared with zeolites.

14.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 73(Pt 4): 744-755, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28762984

RESUMEN

Chloro(phthalocyaninato)aluminium [(C32H16N8)AlCl, Pigment Blue 79] is a molecular compound which crystallizes in a layer structure with stacking disorder. Order-disorder theory was applied to analyse and explain the stacking disorder and to determine the symmetry operations, which generate subsequent layers from a given one. Corresponding ordered structural models were constructed and optimized by force field and dispersion-corrected density functional theory methods. The superposition of the four lowest-energy stackings lead to a structure in which every second double layer looks to be ordered; in the other double layers the molecules occupy one of two lateral positions. This calculated superposition structure agrees excellently with an (incomplete) experimental structure determined from single-crystal data. From the optimized ordered models, the stacking probabilities and the preferred local arrangements were derived. Packing effects such as the distortion of the molecules depending on the arrangement of neighbouring molecules could also be determined.

15.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 73(Pt 4): 756-766, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28762985

RESUMEN

More than 600 molecular crystal structures with correct, incorrect and uncertain space-group symmetry were energy-minimized with dispersion-corrected density functional theory (DFT-D, PBE-D3). For the purpose of determining the correct space-group symmetry the required tolerance on the atomic coordinates of all non-H atoms is established to be 0.2 Å. For 98.5% of 200 molecular crystal structures published with missed symmetry, the correct space group is identified; there are no false positives. Very small, very symmetrical molecules can end up in artificially high space groups upon energy minimization, although this is easily detected through visual inspection. If the space group of a crystal structure determined from powder diffraction data is ambiguous, energy minimization with DFT-D provides a fast and reliable method to select the correct space group.

16.
IUCrJ ; 4(Pt 3): 223-242, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28512570

RESUMEN

Denisovite is a rare mineral occurring as aggregates of fibres typically 200-500 nm diameter. It was confirmed as a new mineral in 1984, but important facts about its chemical formula, lattice parameters, symmetry and structure have remained incompletely known since then. Recently obtained results from studies using microprobe analysis, X-ray powder diffraction (XRPD), electron crystallography, modelling and Rietveld refinement will be reported. The electron crystallography methods include transmission electron microscopy (TEM), selected-area electron diffraction (SAED), high-angle annular dark-field imaging (HAADF), high-resolution transmission electron microscopy (HRTEM), precession electron diffraction (PED) and electron diffraction tomography (EDT). A structural model of denisovite was developed from HAADF images and later completed on the basis of quasi-kinematic EDT data by ab initio structure solution using direct methods and least-squares refinement. The model was confirmed by Rietveld refinement. The lattice parameters are a = 31.024 (1), b = 19.554 (1) and c = 7.1441 (5) Å, ß = 95.99 (3)°, V = 4310.1 (5) Å3 and space group P12/a1. The structure consists of three topologically distinct dreier silicate chains, viz. two xonotlite-like dreier double chains, [Si6O17]10-, and a tubular loop-branched dreier triple chain, [Si12O30]12-. The silicate chains occur between three walls of edge-sharing (Ca,Na) octahedra. The chains of silicate tetrahedra and the octahedra walls extend parallel to the z axis and form a layer parallel to (100). Water molecules and K+ cations are located at the centre of the tubular silicate chain. The latter also occupy positions close to the centres of eight-membered rings in the silicate chains. The silicate chains are geometrically constrained by neighbouring octahedra walls and present an ambiguity with respect to their z position along these walls, with displacements between neighbouring layers being either Δz = c/4 or -c/4. Such behaviour is typical for polytypic sequences and leads to disorder along [100]. In fact, the diffraction pattern does not show any sharp reflections with l odd, but continuous diffuse streaks parallel to a* instead. Only reflections with l even are sharp. The diffuse scattering is caused by (100) nano-lamellae separated by stacking faults and twin boundaries. The structure can be described according to the order-disorder (OD) theory as a stacking of layers parallel to (100).

17.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 72(Pt 3): 416-33, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27240774

RESUMEN

The cis- and trans-isomers of the polycyclic aromatic compound perinone, C26H12N4O2, form a solid solution (Vat Red 14). This solid solution is isotypic to the crystal structures of cis-perinone (Pigment Red 194) and trans-perinone (Pigment Orange 34) and exhibits a combined positional and orientational disorder: In the crystal, each molecular position is occupied by either a cis- or trans-perinone molecule, both of which have two possible molecular orientations. The structure of cis-perinone exhibits a twofold orientational disorder, whereas the structure of trans-perinone is ordered. The crystal structure of the solid solution was determined by single-crystal X-ray analysis. Extensive lattice-energy minimizations with force-field and DFT-D methods were carried out on combinatorially complete sets of ordered models. For the disordered systems, local structures were calculated, including preferred local arrangements, ordering lengths, and probabilities for the arrangement of neighbouring molecules. The superposition of the atomic positions of all energetically favourable calculated models corresponds well with the experimentally determined crystal structures, explaining not only the atomic positions, but also the site occupancies and anisotropic displacement parameters.

18.
Acta Crystallogr C Struct Chem ; 72(Pt 3): 217-24, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26942431

RESUMEN

Theophylline has been used as an active pharmaceutical ingredient (API) in the treatment of pulmonary diseases, but due to its low water solubility reveals very poor bioavailability. Based on its different hydrogen-bond donor and acceptor groups, theophylline is an ideal candidate for the formation of cocrystals. The crystal structure of the 1:1 benzamide cocrystal of theophylline, C7H8N4O2·C7H7NO, was determined from synchrotron X-ray powder diffraction data. The compound crystallizes in the tetragonal space group P41 with four independent molecules in the asymmetric unit. The molecules form a hunter's fence packing. The crystal structure was confirmed by dispersion-corrected DFT calculations. The possibility of salt formation was excluded by the results of Raman and (1)H solid-state NMR spectroscopic analyses.


Asunto(s)
Benzamidas/química , Teofilina/química , Cristalografía por Rayos X , Enlace de Hidrógeno , Teoría Cuántica , Espectrometría Raman , Difracción de Rayos X
19.
Acta Crystallogr A Found Adv ; 72(Pt 1): 62-72, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26697868

RESUMEN

A method towards the solution and refinement of organic crystal structures by fitting to the atomic pair distribution function (PDF) is developed. Approximate lattice parameters and molecular geometry must be given as input. The molecule is generally treated as a rigid body. The positions and orientations of the molecules inside the unit cell are optimized starting from random values. The PDF is obtained from carefully measured X-ray powder diffraction data. The method resembles `real-space' methods for structure solution from powder data, but works with PDF data instead of the diffraction pattern itself. As such it may be used in situations where the organic compounds are not long-range-ordered, are poorly crystalline, or nanocrystalline. The procedure was applied to solve and refine the crystal structures of quinacridone (ß phase), naphthalene and allopurinol. In the case of allopurinol it was even possible to successfully solve and refine the structure in P1 with four independent molecules. As an example of a flexible molecule, the crystal structure of paracetamol was refined using restraints for bond lengths, bond angles and selected torsion angles. In all cases, the resulting structures are in excellent agreement with structures from single-crystal data.

20.
J Pharm Pharmacol ; 67(6): 773-81, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25677117

RESUMEN

OBJECTIVES: This study describes the general method for the determination of the crystal structures of active pharmaceutical ingredients (API) from powder diffraction data and demonstrates its use to determine the hitherto unknown crystal structure of fexofenadine hydrochloride, a third-generation antihistamine drug. METHODS: Fexofenadine hydrochloride was subjected to a series of crystallisation experiments using re-crystallisation from solvents, gas diffusion, layering with an antisolvent and gel crystallisation. Powder diffraction patterns of all samples were recorded and inspected for polymorphism and for crystallinity. KEY FINDINGS: All samples corresponded to the same polymorph. The crystal structure was determined from an X-ray powder diffraction pattern using a real-space method with subsequent Rietveld refinement. The structure exhibits a two-dimensional hydrogen bond network. CONCLUSION: Crystal structures of API can be determined from X-ray powder diffraction data with good reliability. Fexofenadine exhibits only one polymorphic form, which is stabilised in the crystal by strong hydrogen bonds of the type (+)N-H···Cl(-), O-H···Cl(-), and between COOH groups.


Asunto(s)
Química Farmacéutica/métodos , Cristalografía por Rayos X/métodos , Preparaciones Farmacéuticas/química , Terfenadina/análogos & derivados , Cristalización , Humanos , Enlace de Hidrógeno , Estructura Molecular , Difracción de Polvo , Polvos , Reproducibilidad de los Resultados , Solventes , Terfenadina/química , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...