Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Neuropathol Commun ; 11(1): 112, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37434215

RESUMEN

Cytoplasmic aggregation and concomitant nuclear clearance of the RNA-binding protein TDP-43 are found in ~ 90% of cases of amyotrophic lateral sclerosis and ~ 45% of patients living with frontotemporal lobar degeneration, but no disease-modifying therapy is available. Antibody therapy targeting other aggregating proteins associated with neurodegenerative disorders has shown beneficial effects in animal models and clinical trials. The most effective epitopes for safe antibody therapy targeting TDP-43 are unknown. Here, we identified safe and effective epitopes in TDP-43 for active and potential future passive immunotherapy. We prescreened 15 peptide antigens covering all regions of TDP-43 to identify the most immunogenic epitopes and to raise novel monoclonal antibodies in wild-type mice. Most peptides induced a considerable antibody response and no antigen triggered obvious side effects. Thus, we immunized mice with rapidly progressing TDP-43 proteinopathy ("rNLS8" model) with the nine most immunogenic peptides in five pools prior to TDP-43ΔNLS transgene induction. Strikingly, combined administration of two N-terminal peptides induced genetic background-specific sudden lethality in several mice and was therefore discontinued. Despite a strong antibody response, no TDP-43 peptide prevented the rapid body weight loss or reduced phospho-TDP-43 levels as well as the profound astrogliosis and microgliosis in rNLS8 mice. However, immunization with a C-terminal peptide containing the disease-associated phospho-serines 409/410 significantly lowered serum neurofilament light chain levels, indicative of reduced neuroaxonal damage. Transcriptomic profiling showed a pronounced neuroinflammatory signature (IL-1ß, TNF-α, NfκB) in rNLS8 mice and suggested modest benefits of immunization targeting the glycine-rich region. Several novel monoclonal antibodies targeting the glycine-rich domain potently reduced phase separation and aggregation of TDP-43 in vitro and prevented cellular uptake of preformed aggregates. Our unbiased screen suggests that targeting the RRM2 domain and the C-terminal region of TDP-43 by active or passive immunization may be beneficial in TDP-43 proteinopathies by inhibiting cardinal processes of disease progression.


Asunto(s)
Anticuerpos Monoclonales , Filamentos Intermedios , Animales , Ratones , Epítopos , Inmunización , FN-kappa B
2.
Am J Physiol Regul Integr Comp Physiol ; 313(6): R669-R679, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28877873

RESUMEN

In addition to their intended clinical actions, all general anesthetic agents in common use have detrimental intrasurgical and postsurgical side effects on organs and systems, including the heart. The major cardiac side effect of anesthesia is bradycardia, which increases the probability of insufficient systemic perfusion during surgery. These side effects also occur in all vertebrate species so far examined, but the underlying mechanisms are not clear. The zebrafish heart is a powerful model for studying cardiac electrophysiology, employing the same pacemaker system and neural control as do mammalian hearts. In this study, isolated zebrafish hearts were significantly bradycardic during exposure to the vapor anesthetics sevoflurane (SEVO), desflurane (DES), and isoflurane (ISO). Bradycardia induced by DES and ISO continued during pharmacological blockade of the intracardiac portion of the autonomic nervous system, but the chronotropic effect of SEVO was eliminated during blockade. Bradycardia evoked by vagosympathetic nerve stimulation was augmented during DES and ISO exposure; nerve stimulation during SEVO exposure had no effect. Together, these results support the hypothesis that the cardiac chronotropic effect of SEVO occurs via a neurally mediated mechanism, while DES and ISO act directly upon cardiac pacemaker cells via an as yet unknown mechanism.


Asunto(s)
Anestésicos por Inhalación/toxicidad , Bradicardia/inducido químicamente , Frecuencia Cardíaca/efectos de los fármacos , Corazón/efectos de los fármacos , Isoflurano/análogos & derivados , Isoflurano/toxicidad , Éteres Metílicos/toxicidad , Pez Cebra , Animales , Relojes Biológicos/efectos de los fármacos , Bradicardia/fisiopatología , Desflurano , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica , Femenino , Gases , Corazón/inervación , Corazón/fisiopatología , Preparación de Corazón Aislado , Masculino , Modelos Animales , Sevoflurano , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/fisiopatología , Factores de Tiempo , Nervio Vago/efectos de los fármacos , Nervio Vago/fisiopatología
3.
Data Brief ; 9: 758-763, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27844042

RESUMEN

This article provides supporting data for the research article "A simple automated system for appetitive conditioning of zebrafish in their home tanks" (J.M. Doyle, N. Merovitch, R.C. Wyeth, M.R. Stoyek, M. Schmidt, F. Wilfart, A. Fine, R.P. Croll, 2016) [1]. In that article, we described overall movements of zebrafish toward a food source as a response to auditory or visual cues as conditioned stimuli in a novel learning paradigm. Here, we describe separate analyses of the vertical and horizontal components of the learned response. These data provide evidence that the conditioning might result from both classical conditioning of an innate response of zebrafish to move to the surface in response to food cues and secondary conditioning of the fish to associate a food presentation with a specific location in the tank. Movement data from the twenty trial acquisition period and probe trials from 2-32 days post conditioning are included.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...