Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Function (Oxf) ; 5(3): zqae009, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706961

RESUMEN

Global prevalence of hypertension is on the rise, burdening healthcare, especially in developing countries where infectious diseases, such as malaria, are also rampant. Whether hypertension could predispose or increase susceptibility to malaria, however, has not been extensively explored. Previously, we reported that hypertension is associated with abnormal red blood cell (RBC) physiology and anemia. Since RBC are target host cells for malarial parasite, Plasmodium, we hypothesized that hypertensive patients with abnormal RBC physiology are at greater risk or susceptibility to Plasmodium infection. To test this hypothesis, normotensive (BPN/3J) and hypertensive (BPH/2J) mice were characterized for their RBC physiology and subsequently infected with Plasmodium yoelii (P. yoelii), a murine-specific non-lethal strain. When compared to BPN mice, BPH mice displayed microcytic anemia with RBC highly resistant to osmotic hemolysis. Further, BPH RBC exhibited greater membrane rigidity and an altered lipid composition, as evidenced by higher levels of phospholipids and saturated fatty acid, such as stearate (C18:0), along with lower levels of polyunsaturated fatty acid like arachidonate (C20:4). Moreover, BPH mice had significantly greater circulating Ter119+ CD71+ reticulocytes, or immature RBC, prone to P. yoelii infection. Upon infection with P. yoelii, BPH mice experienced significant body weight loss accompanied by sustained parasitemia, indices of anemia, and substantial increase in systemic pro-inflammatory mediators, compared to BPN mice, indicating that BPH mice were incompetent to clear P. yoelii infection. Collectively, these data demonstrate that aberrant RBC physiology observed in hypertensive BPH mice contributes to an increased susceptibility to P. yoelii infection and malaria-associated pathology.


Asunto(s)
Eritrocitos , Hipertensión , Malaria , Plasmodium yoelii , Animales , Malaria/inmunología , Malaria/parasitología , Malaria/complicaciones , Malaria/sangre , Malaria/fisiopatología , Ratones , Eritrocitos/parasitología , Eritrocitos/metabolismo , Susceptibilidad a Enfermedades , Masculino , Anemia/parasitología , Modelos Animales de Enfermedad , Hemólisis
2.
JCI Insight ; 9(11)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687615

RESUMEN

A systems analysis was conducted to determine the potential molecular mechanisms underlying differential immunogenicity and protective efficacy results of a clinical trial of the radiation-attenuated whole-sporozoite PfSPZ vaccine in African infants. Innate immune activation and myeloid signatures at prevaccination baseline correlated with protection from P. falciparum parasitemia in placebo controls. These same signatures were associated with susceptibility to parasitemia among infants who received the highest and most protective PfSPZ vaccine dose. Machine learning identified spliceosome, proteosome, and resting DC signatures as prevaccination features predictive of protection after highest-dose PfSPZ vaccination, whereas baseline circumsporozoite protein-specific (CSP-specific) IgG predicted nonprotection. Prevaccination innate inflammatory and myeloid signatures were associated with higher sporozoite-specific IgG Ab response but undetectable PfSPZ-specific CD8+ T cell responses after vaccination. Consistent with these human data, innate stimulation in vivo conferred protection against infection by sporozoite injection in malaria-naive mice while diminishing the CD8+ T cell response to radiation-attenuated sporozoites. These data suggest a dichotomous role of innate stimulation for malaria protection and induction of protective immunity by whole-sporozoite malaria vaccines. The uncoupling of vaccine-induced protective immunity achieved by Abs from more protective CD8+ T cell responses suggests that PfSPZ vaccine efficacy in malaria-endemic settings may be constrained by opposing antigen presentation pathways.


Asunto(s)
Inmunidad Innata , Vacunas contra la Malaria , Malaria Falciparum , Plasmodium falciparum , Esporozoítos , Vacunas Atenuadas , Vacunas contra la Malaria/inmunología , Vacunas contra la Malaria/administración & dosificación , Inmunidad Innata/inmunología , Humanos , Animales , Malaria Falciparum/prevención & control , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Ratones , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/administración & dosificación , Esporozoítos/inmunología , Esporozoítos/efectos de la radiación , Linfocitos T CD8-positivos/inmunología , Lactante , Proteínas Protozoarias/inmunología , Anticuerpos Antiprotozoarios/inmunología , Femenino , Parasitemia/inmunología , Parasitemia/prevención & control , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Eficacia de las Vacunas
3.
medRxiv ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38076970

RESUMEN

Obesity is increasingly prevalent in type 1 diabetes (T1D) and is associated with management problems and higher risk for diabetes complications. Gut microbiome changes have been described separately in each of T1D and obesity, however, it is unknown to what extent gut microbiome changes are seen when obesity and T1D concomitantly occur. OBJECTIVE: To describe the gut microbiome and microbial metabolite changes associated with obesity in T1D. We hypothesized significant gut microbial and metabolite differences between T1D youth who are lean (BMI: 5-<85%) vs. those with obesity (BMI: ≥95%). METHODS: We analyzed stool samples for gut microbial (using metagenomic shotgun sequencing) and short-chain fatty acid (SCFA) metabolite differences in lean (n=27) and obese (n=21) T1D youth. The mean±SD age was 15.3±2.2yrs, A1c 7.8±1.3%, diabetes duration 5.1±4.4yrs, 42.0% females, and 94.0% were White. Linear discriminant analysis (LDA) effect size (LEfSe) was used to identify taxa that best discriminated between the BMI groups. RESULTS: Bacterial community composition showed differences in species type (ß-diversity) by BMI group (p=0.013). At the genus level, there was a higher ratio of Prevotella to Bacteroides in the obese group (p=0.0058). LEfSe analysis showed a differential distribution of significantly abundant taxa in either the lean or obese groups, including increased relative abundance of Prevotella copri , among other taxa in the obese group. Functional profiling showed that pathways associated with decreased insulin sensitivity were upregulated in the obese group. Stool SCFAs (acetate, propionate and butyrate) were higher in the obese compared to the lean group (p<0.05 for all). CONCLUSIONS: Our findings identify gut microbiome, microbial metabolite and functional pathways differences associated with obesity in T1D. These findings could be helpful in identifying gut microbiome targeted therapies to manage obesity in T1D.

4.
J Am Chem Soc ; 145(48): 26095-26105, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-37989570

RESUMEN

Peptide-induced transmembrane pore formation is commonplace in biology. Examples of transmembrane pores include pores formed by antimicrobial peptides (AMPs) and cell-penetrating peptides (CPPs) in bacterial membranes and eukaryotic membranes, respectively. In general, however, transmembrane pore formation depends on peptide sequences, lipid compositions, and intensive thermodynamic variables and is difficult to observe directly under realistic solution conditions, with structures that are challenging to measure directly. In contrast, the structure and phase behavior of peptide-lipid systems are relatively straightforward to map out experimentally for a broad range of conditions. Cubic phases are often observed in systems involving pore-forming peptides; however, it is not clear how the structural tendency to induce negative Gaussian curvature (NGC) in such phases is quantitatively related to the geometry of biological pores. Here, we leverage the theory of anisotropic inclusions and devise a facile method to estimate transmembrane pore sizes from geometric parameters of cubic phases measured from small-angle X-ray scattering (SAXS) and show that such estimates compare well with known pore sizes. Moreover, our model suggests that although AMPs can induce stable transmembrane pores for membranes with a broad range of conditions, pores formed by CPPs are highly labile, consistent with atomistic simulations.


Asunto(s)
Péptidos de Penetración Celular , Péptidos de Penetración Celular/química , Membrana Dobles de Lípidos/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Secuencia de Aminoácidos
5.
PLoS Pathog ; 19(10): e1011665, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37824458

RESUMEN

Malaria is a devastating infectious disease and significant global health burden caused by the bite of a Plasmodium-infected female Anopheles mosquito. Gut microbiota was recently discovered as a risk factor of severe malaria. This review entails the recent advances on the impact of gut microbiota composition on malaria severity and consequence of malaria infection on gut microbiota in mammalian hosts. Additionally, this review provides mechanistic insight into interactions that might occur between gut microbiota and host immunity which in turn can modulate malaria severity. Finally, approaches to modulate gut microbiota composition are discussed. We anticipate this review will facilitate novel hypotheses to move the malaria-gut microbiome field forward.


Asunto(s)
Anopheles , Microbioma Gastrointestinal , Malaria , Plasmodium , Animales , Femenino , Humanos , Factores de Riesgo , Mamíferos
6.
Microbiol Spectr ; 11(6): e0155423, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37819130

RESUMEN

IMPORTANCE: There is increasing evidence that microbes residing within the intestines (gut microbiota) play important roles in the well-being of humans. Yet, there are considerable challenges in determining the specific role of gut microbiota in human diseases owing to the complexity of diverse internal and environmental factors that can contribute to diseases. Mice devoid of all microorganisms (germ-free mice) can be colonized with human stool samples to examine the specific contribution of the gut microbiota to a disease. These approaches have been primarily focused on stool samples obtained from individuals in Western countries. Thus, there is limited understanding as to whether the same methods used to colonize germ-free mice with stool from Western individuals would apply to the colonization of germ-free mice with stool from non-Western individuals. Here, we report the results from colonizing germ-free mice with stool samples of Malian children.


Asunto(s)
Microbioma Gastrointestinal , Intestinos , Niño , Humanos , Animales , Ratones , Modelos Animales de Enfermedad , Vida Libre de Gérmenes , Heces
7.
Nat Commun ; 14(1): 6465, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833304

RESUMEN

Malaria is caused by Plasmodium species and remains a significant cause of morbidity and mortality globally. Gut bacteria can influence the severity of malaria, but the contribution of specific bacteria to the risk of severe malaria is unknown. Here, multiomics approaches demonstrate that specific species of Bacteroides are causally linked to the risk of severe malaria. Plasmodium yoelii hyperparasitemia-resistant mice gavaged with murine-isolated Bacteroides fragilis develop P. yoelii hyperparasitemia. Moreover, Bacteroides are significantly more abundant in Ugandan children with severe malarial anemia than with asymptomatic P. falciparum infection. Human isolates of Bacteroides caccae, Bacteroides uniformis, and Bacteroides ovatus were able to cause susceptibility to severe malaria in mice. While monocolonization of germ-free mice with Bacteroides alone is insufficient to cause susceptibility to hyperparasitemia, meta-analysis across multiple studies support a main role for Bacteroides in susceptibility to severe malaria. Approaches that target gut Bacteroides present an opportunity to prevent severe malaria and associated deaths.


Asunto(s)
Anemia , Malaria , Plasmodium yoelii , Niño , Humanos , Animales , Ratones , Consorcios Microbianos , Bacteroides/genética , Bacteroides fragilis , Anemia/etiología
8.
bioRxiv ; 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37546874

RESUMEN

Peptide induced trans-membrane pore formation is commonplace in biology. Examples of transmembrane pores include pores formed by antimicrobial peptides (AMPs) and cell penetrating peptides (CPPs) in bacterial membranes and eukaryotic membranes, respectively. In general, however, transmembrane pore formation depends on peptide sequences, lipid compositions and intensive thermodynamic variables and is difficult to observe directly under realistic solution conditions, with structures that are challenging to measure directly. In contrast, the structure and phase behavior of peptide-lipid systems are relatively straightforward to map out experimentally for a broad range of conditions. Cubic phases are often observed in systems involving pore forming peptides; however, it is not clear how the structural tendency to induce negative Gaussian curvature (NGC) in such phases is quantitatively related to the geometry of biological pores. Here, we leverage the theory of anisotropic inclusions and devise a facile method to estimate transmembrane pore sizes from geometric parameters of cubic phases measured from small angle X-ray scattering (SAXS) and show that such estimates compare well with known pore sizes. Moreover, our model suggests that whereas AMPs can induce stable transmembrane pores for membranes with a broad range of conditions, pores formed by CPPs are highly labile, consistent with atomistic simulations.

9.
Front Allergy ; 4: 1135412, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36970065

RESUMEN

In humans and animals, offspring of allergic mothers have increased responsiveness to allergens. This is blocked in mice by maternal supplementation with α-tocopherol (αT). Also, adults and children with allergic asthma have airway microbiome dysbiosis with increased Proteobacteria and may have decreased Bacteroidota. It is not known whether αT alters neonate development of lung microbiome dysbiosis or whether neonate lung dysbiosis modifies development of allergy. To address this, the bronchoalveolar lavage was analyzed by 16S rRNA gene analysis (bacterial microbiome) from pups of allergic and non-allergic mothers with a basal diet or αT-supplemented diet. Before and after allergen challenge, pups of allergic mothers had dysbiosis in lung microbial composition with increased Proteobacteria and decreased Bacteroidota and this was blocked by αT supplementation. We determined whether intratracheal transfer of pup lung dysbiotic microbial communities modifies the development of allergy in recipient pups early in life. Interestingly, transfer of dysbiotic lung microbial communities from neonates of allergic mothers to neonates of non-allergic mothers was sufficient to confer responsiveness to allergen in the recipient pups. In contrast, neonates of allergic mothers were not protected from development of allergy by transfer of donor lung microbial communities from either neonates of non-allergic mothers or neonates of αT-supplemented allergic mothers. These data suggest that the dysbiotic lung microbiota is dominant and sufficient for enhanced neonate responsiveness to allergen. Importantly, infants within the INHANCE cohort with an anti-inflammatory profile of tocopherol isoforms had an altered microbiome composition compared to infants with a pro-inflammatory profile of tocopherol isoforms. These data may inform design of future studies for approaches in the prevention or intervention in asthma and allergic disease early in life.

10.
ACS Nano ; 15(10): 15930-15939, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34586780

RESUMEN

Neutrophils are crucial for host defense but are notorious for causing sterile inflammatory damage. Activated neutrophils in inflamed tissue can liberate histone H4, which was recently shown to perpetuate inflammation by permeating membranes via the generation of negative Gaussian curvature (NGC), leading to lytic cell death. Here, we show that it is possible to build peptides or proteins that cancel NGC in membranes and thereby suppress pore formation, and demonstrate that they can inhibit H4 membrane remodeling and thereby reduce histone H4-driven lytic cell death and resultant inflammation. As a demonstration of principle, we use apolipoprotein A-I (apoA-I) mimetic peptide apoMP1. X-ray structural studies and theoretical calculations show that apoMP1 induces nanoscopic positive Gaussian curvature (PGC), which interacts with the NGC induced by the N-terminus of histone H4 (H4n) to inhibit membrane permeation. Interestingly, we show that induction of PGC can inhibit membrane-permeating activity in general and "turn off" diverse membrane-permeating molecules besides H4n. In vitro experiments show an apoMP1 dose-dependent rescue of H4 cytotoxicity. Using a mouse model, we show that tissue accumulation of neutrophils, release of neutrophil extracellular traps (NETs), and extracellular H4 all strongly correlate independently with local tissue cell death in multiple organs, but administration of apoMP1 inhibits histone H4-mediated cytotoxicity and strongly prevents organ tissue damage.


Asunto(s)
Trampas Extracelulares , Neutrófilos , Muerte Celular , Histonas , Péptidos/farmacología
11.
Cell Rep ; 35(6): 109094, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33979614

RESUMEN

Gut microbiota educate the local and distal immune system in early life to imprint long-term immunological outcomes while maintaining the capacity to dynamically modulate the local mucosal immune system throughout life. It is unknown whether gut microbiota provide signals that dynamically regulate distal immune responses following an extra-gastrointestinal infection. We show here that gut bacteria composition correlated with the severity of malaria in children. Using the murine model of malaria, we demonstrate that parasite burden and spleen germinal center reactions are malleable to dynamic cues provided by gut bacteria. Whereas antibiotic-induced changes in gut bacteria have been associated with immunopathology or impairment of immunity, the data demonstrate that antibiotic-induced changes in gut bacteria can enhance immunity to Plasmodium. This effect is not universal but depends on baseline gut bacteria composition. These data demonstrate the dynamic communications that exist among gut bacteria, the gut-distal immune system, and control of Plasmodium infection.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Centro Germinal/inmunología , Malaria/inmunología , Bazo/fisiopatología , Animales , Modelos Animales de Enfermedad , Humanos , Ratones
12.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33723045

RESUMEN

The randomization and screening of combinatorial DNA libraries is a powerful technique for understanding sequence-function relationships and optimizing biosynthetic pathways. Although it can be difficult to predict a priori which sequence combinations encode functional units, it is often possible to omit undesired combinations that inflate library size and screening effort. However, defined library generation is difficult when a complex scan through sequence space is needed. To overcome this challenge, we designed a hybrid valve- and droplet-based microfluidic system that deterministically assembles DNA parts in picoliter droplets, reducing reagent consumption and bias. Using this system, we built a combinatorial library encoding an engineered histidine kinase (HK) based on bacterial CpxA. Our library encodes designed transmembrane (TM) domains that modulate the activity of the cytoplasmic domain of CpxA and variants of the structurally distant "S helix" located near the catalytic domain. We find that the S helix sets a basal activity further modulated by the TM domain. Surprisingly, we also find that a given TM motif can elicit opposing effects on the catalytic activity of different S-helix variants. We conclude that the intervening HAMP domain passively transmits signals and shapes the signaling response depending on subtle changes in neighboring domains. This flexibility engenders a richness in functional outputs as HKs vary in response to changing evolutionary pressures.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , ADN/química , ADN/metabolismo , Microfluídica , Ingeniería de Proteínas , Dominios y Motivos de Interacción de Proteínas , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Activación Enzimática , Expresión Génica , Biblioteca de Genes , Microfluídica/instrumentación , Microfluídica/métodos , Modelos Moleculares , Conformación Molecular , Ingeniería de Proteínas/métodos , Proteínas Quinasas/genética , Relación Estructura-Actividad
13.
Cell Rep ; 33(11): 108503, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33326773

RESUMEN

Gut microbiota composition is associated with human and rodent Plasmodium infections, yet the mechanism by which gut microbiota affects the severity of malaria remains unknown. Humoral immunity is critical in mediating the clearance of Plasmodium blood stage infections, prompting the hypothesis that mice with gut microbiota-dependent decreases in parasite burden exhibit better germinal center (GC) responses. In support of this hypothesis, mice with a low parasite burden exhibit increases in GC B cell numbers and parasite-specific antibody titers, as well as better maintenance of GC structures and a more targeted, qualitatively different antibody response. This enhanced humoral immunity affects memory, as mice with a low parasite burden exhibit robust protection against challenge with a heterologous, lethal Plasmodium species. These results demonstrate that gut microbiota composition influences the biology of spleen GCs as well as the titer and repertoire of parasite-specific antibodies, identifying potential approaches to develop optimal treatments for malaria.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Centro Germinal/metabolismo , Malaria/inmunología , Animales , Humanos , Ratones
14.
Curr Opin Microbiol ; 58: 56-61, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33007644

RESUMEN

Malaria continues to pose a severe threat to over half of the world's population each year. With no long-term, effective vaccine available and a growing resistance to antimalarials, there is a need for innovative methods of Plasmodium treatment. Recent evidence has pointed to a role of the composition of the gut microbiota in the severity of Plasmodium infection in both animal models and human studies. Further evidence has shown that the gut microbiota influences the adaptive immune response of the host, the arm of the immune system necessary for Plasmodium clearance, sustained Plasmodium immunity, and vaccine efficacy. Together, this illustrates the future potential of gut microbiota modulation as a novel method of preventing severe malaria.


Asunto(s)
Microbioma Gastrointestinal , Malaria/inmunología , Plasmodium/fisiología , Inmunidad Adaptativa , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Humanos , Inmunidad , Malaria/microbiología , Malaria/prevención & control , Vacunas contra la Malaria/genética , Vacunas contra la Malaria/inmunología , Plasmodium/genética , Plasmodium/inmunología
15.
Artículo en Inglés | MEDLINE | ID: mdl-32714882

RESUMEN

One complication of malaria is increased susceptibility to invasive bacterial infections. Plasmodium infections impair host immunity to non-Typhoid Salmonella (NTS) through heme-oxygenase I (HO-I)-induced release of immature granulocytes and myeloid cell-derived IL-10. Yet, it is not known if these mechanisms are specific to NTS. We show here, that Plasmodium yoelii 17XNL (Py) infected mice had impaired clearance of systemic Listeria monocytogenes (Lm) during both acute parasitemia and up to 2 months after clearance of Py infected red blood cells that was independent of HO-I and IL-10. Py-infected mice were also susceptible to Streptococcus pneumoniae (Sp) bacteremia, a common malaria-bacteria co-infection, with higher blood and spleen bacterial burdens and decreased survival compared to naïve mice. Mechanistically, impaired immunity to Sp was independent of HO-I, but was dependent on Py-induced IL-10. Splenic phagocytes from Py infected mice exhibit an impaired ability to restrict growth of intracellular Lm, and neutrophils from Py-infected mice produce less reactive oxygen species (ROS) in response to Lm or Sp. Analysis also identified a defect in a serum component in Py-infected mice that contributes to reduced production of ROS in response to Sp. Finally, treating naïve mice with Plasmodium-derived hemozoin containing naturally bound bioactive molecules, excluding DNA, impaired clearance of Lm. Collectively, we have demonstrated that Plasmodium infection impairs host immunity to diverse bacteria, including S. pneumoniae, through multiple effects on innate immunity, and that a parasite-specific factor (Hz+bound bioactive molecules) directly contributes to Plasmodium-induced suppression of antibacterial innate immunity.


Asunto(s)
Hemoproteínas , Inmunidad Innata , Plasmodium yoelii , Salmonelosis Animal/inmunología , Animales , Ratones , Ratones Endogámicos C57BL
16.
Front Immunol ; 11: 1626, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32714336

RESUMEN

Most SARS-CoV2 infections will not develop into severe COVID-19. However, in some patients, lung infection leads to the activation of alveolar macrophages and lung epithelial cells that will release proinflammatory cytokines. IL-6, TNF, and IL-1ß increase expression of cell adhesion molecules (CAMs) and VEGF, thereby increasing permeability of the lung endothelium and reducing barrier protection, allowing viral dissemination and infiltration of neutrophils and inflammatory monocytes. In the blood, these cytokines will stimulate the bone marrow to produce and release immature granulocytes, that return to the lung and further increase inflammation, leading to acute respiratory distress syndrome (ARDS). This lung-systemic loop leads to cytokine storm syndrome (CSS). Concurrently, the acute phase response increases the production of platelets, fibrinogen and other pro-thrombotic factors. Systemic decrease in ACE2 function impacts the Renin-Angiotensin-Kallikrein-Kinin systems (RAS-KKS) increasing clotting. The combination of acute lung injury with RAS-KKS unbalance is herein called COVID-19 Associated Lung Injury (CALI). This conservative two-hit model of systemic inflammation due to the lung injury allows new intervention windows and is more consistent with the current knowledge.


Asunto(s)
Lesión Pulmonar Aguda/inmunología , Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Pulmón/inmunología , Neumonía Viral/inmunología , Síndrome Respiratorio Agudo Grave/inmunología , Síndrome de Respuesta Inflamatoria Sistémica/inmunología , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/terapia , COVID-19 , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/terapia , Humanos , Pulmón/patología , Pandemias , Neumonía Viral/patología , Neumonía Viral/terapia , SARS-CoV-2 , Síndrome Respiratorio Agudo Grave/patología , Síndrome Respiratorio Agudo Grave/terapia , Síndrome de Respuesta Inflamatoria Sistémica/patología , Síndrome de Respuesta Inflamatoria Sistémica/terapia
17.
BMC Biol ; 18(1): 83, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620114

RESUMEN

BACKGROUND: Experimental reproducibility in mouse models is impacted by both genetics and environment. The generation of reproducible data is critical for the biomedical enterprise and has become a major concern for the scientific community and funding agencies alike. Among the factors that impact reproducibility in experimental mouse models is the variable composition of the microbiota in mice supplied by different commercial vendors. Less attention has been paid to how the microbiota of mice supplied by a particular vendor might change over time. RESULTS: In the course of conducting a series of experiments in a mouse model of malaria, we observed a profound and lasting change in the severity of malaria in mice infected with Plasmodium yoelii; while for several years mice obtained from a specific production suite of a specific commercial vendor were able to clear the parasites effectively in a relatively short time, mice subsequently shipped from the same unit suffered much more severe disease. Gut microbiota analysis of frozen cecal samples identified a distinct and lasting shift in bacteria populations that coincided with the altered response of the later shipments of mice to infection with malaria parasites. Germ-free mice colonized with cecal microbiota from mice within the same production suite before and after this change followed by Plasmodium infection provided a direct demonstration that the change in gut microbiota profoundly impacted the severity of malaria. Moreover, spatial changes in gut microbiota composition were also shown to alter the acute bacterial burden following Salmonella infection, and tumor burden in a lung tumorigenesis model. CONCLUSION: These changes in gut bacteria may have impacted the experimental reproducibility of diverse research groups and highlight the need for both laboratory animal providers and researchers to collaborate in determining the methods and criteria needed to stabilize the gut microbiota of animal breeding colonies and research cohorts, and to develop a microbiota solution to increase experimental rigor and reproducibility.


Asunto(s)
Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Malaria/fisiopatología , Plasmodium yoelii/fisiología , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Análisis Espacio-Temporal
18.
Am J Trop Med Hyg ; 103(4): 1553-1555, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32618266

RESUMEN

The antimalarial drug lumefantrine exhibits erratic pharmacokinetics. Intersubject variability might be attributed, in part, to differences in gut microbiome-mediated drug metabolism. We assessed lumefantrine disposition in healthy mice stratified by enterotype to explore associations between the gut microbiota and lumefantrine pharmacokinetics. Gut microbiota enterotypes were classified according to abundance and diversity indices from 16S rRNA sequencing. Pharmacokinetic parameters were computed using noncompartmental analysis. Two distinct enterotypes were identified. Maximal concentration (C max) and total drug exposure measured as the area under the drug concentration-time curve (AUC0-24) differed significantly between the groups. The mean and standard deviation of C max were 660 ± 220 ng/mL versus 390 ± 59 ng/mL (P = 0.02), and AUC0-24 was 9,600 ± 2,800 versus 5,800 ± 810 ng × h/mL (P = 0.01). In healthy mice intragastrically dosed with the antimalarial drug lumefantrine in combination with artemether, lumefantrine exposure was associated with gut bacterial community structure. Studies of xenobiotic-microbiota interactions can inform drug posology and elucidate mechanisms of drug disposition.


Asunto(s)
Antimaláricos/farmacología , Arteméter/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Lumefantrina/farmacología , Animales , Interacciones Farmacológicas , Femenino , Ratones , Ratones Endogámicos C57BL
19.
Sci Rep ; 9(1): 11952, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31420579

RESUMEN

Malaria is an infectious disease responsible for the death of around 450,000 people annually. As an effective vaccine against the parasite that causes malaria is not available, antimalarial drug treatments are critical in fighting the disease. Previous data has shown that the gut microbiota is important in modulating the severity of malaria. Although it is well appreciated that antibiotics substantially alter the gut microbiota, it is largely unknown how antimalarial drugs impact the gut microbiota. We show here that the two commonly used artemisinin combination therapies of artesunate plus amodiaquine and artemether plus lumefantrine do not change the gut microbiota. The overall relative species abundance and alpha diversity remained stable after treatment, while beta diversity analysis showed minimal changes due to drug treatment, which were transient and quickly returned to baseline. Additionally, treatment with antimalarial drugs did not change the kinetics of later Plasmodium infection. Taken together, antimalarial drug administration does not affect the gut microbiota.


Asunto(s)
Antimaláricos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Malaria , Plasmodium/metabolismo , Administración Oral , Animales , Quimioterapia Combinada , Femenino , Malaria/tratamiento farmacológico , Malaria/microbiología , Ratones
20.
PLoS One ; 14(6): e0218250, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31170258

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0214449.].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...