Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Sci Transl Med ; 16(730): eadh9039, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38232141

RESUMEN

The fusion peptide (FP) on the HIV-1 envelope (Env) trimer can be targeted by broadly neutralizing antibodies (bNAbs). Here, we evaluated the ability of a human FP-directed bNAb, VRC34.01, along with two vaccine-elicited anti-FP rhesus macaque mAbs, DFPH-a.15 and DF1W-a.01, to protect against simian-HIV (SHIV)BG505 challenge. VRC34.01 neutralized SHIVBG505 with a 50% inhibitory concentration (IC50) of 0.58 µg/ml, whereas DF1W-a.01 and DFPH-a.15 were 4- or 30-fold less potent, respectively. VRC34.01 was infused into four rhesus macaques at a dose of 10 mg/kg and four rhesus macaques at a dose of 2.5 mg/kg. The animals were intrarectally challenged 5 days later with SHIVBG505. In comparison with all 12 control animals that became infected, all four animals infused with VRC34.01 (10 mg/kg) and three out of four animals infused with VRC34.01 (2.5 mg/kg) remained uninfected. Because of the lower potency of DF1W-a.01 and DFPH-a.15 against SHIVBG505, we infused both Abs at a higher dose of 100 mg/kg into four rhesus macaques each, followed by SHIVBG505 challenge 5 days later. Three of four animals that received DF1W-a.01 were protected against infection, whereas all animals that received DFPH-a.15 were protected. Overall, the protective serum neutralization titers observed in these animals were similar to what has been observed for other bNAbs in similar SHIV infection models and in human clinical trials. In conclusion, FP-directed mAbs can thus provide dose-dependent in vivo protection against mucosal SHIV challenges, supporting the development of prophylactic vaccines targeting the HIV-1 Env FP.


Asunto(s)
Vacunas contra el SIDA , Infecciones por VIH , VIH-1 , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Humanos , Macaca mulatta , Anticuerpos ampliamente neutralizantes , Anticuerpos Anti-VIH/uso terapéutico , Infecciones por VIH/prevención & control , Anticuerpos Monoclonales , Péptidos , Anticuerpos Neutralizantes
2.
Nat Med ; 29(1): 247-257, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36265510

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants in the Omicron lineage has resulted in diminished Coronavirus Disease 2019 (COVID-19) vaccine efficacy and persistent transmission. In this study, we evaluated the immunogenicity and protective efficacy of two, recently authorized, bivalent COVID-19 vaccines that contain two mRNAs encoding Wuhan-1 and either BA.1 (mRNA-1273.214) or BA.4/5 (mRNA-1273.222) spike proteins. As a primary two-dose immunization series in mice, both bivalent vaccines induced greater neutralizing antibody responses against Omicron variants than the parental, monovalent mRNA-1273 vaccine. When administered to mice as a booster at 7 months after the primary vaccination series with mRNA-1273, the bivalent vaccines induced broadly neutralizing antibody responses. Whereas most anti-Omicron receptor binding domain antibodies in serum induced by mRNA-1273, mRNA-1273.214 and mRNA-1273.222 boosters cross-reacted with the antecedent Wuhan-1 spike antigen, the mRNA-1273.214 and mRNA-1273.222 bivalent vaccine boosters also induced unique BA.1-specific and BA.4/5-specific responses, respectively. Although boosting with parental or bivalent mRNA vaccines substantially improved protection against BA.5 compared to mice receiving two vaccine doses, the levels of infection, inflammation and pathology in the lung were lowest in animals administered the bivalent mRNA vaccines. Thus, boosting with bivalent Omicron-based mRNA-1273.214 or mRNA-1273.222 vaccines enhances immunogenicity and confers protection in mice against a currently circulating SARS-CoV-2 strain.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Animales , Ratones , Humanos , Vacuna nCoV-2019 mRNA-1273 , SARS-CoV-2/genética , COVID-19/prevención & control , Vacunas de ARNm , Anticuerpos Neutralizantes , ARN Mensajero/genética , Vacunas Combinadas , Anticuerpos Antivirales
3.
Nat Commun ; 13(1): 7733, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36517467

RESUMEN

An important consequence of infection with a SARS-CoV-2 variant is protective humoral immunity against other variants. However, the basis for such cross-protection at the molecular level is incompletely understood. Here, we characterized the repertoire and epitope specificity of antibodies elicited by infection with the Beta, Gamma and WA1 ancestral variants and assessed their cross-reactivity to these and the more recent Delta and Omicron variants. We developed a method to obtain immunoglobulin sequences with concurrent rapid production and functional assessment of monoclonal antibodies from hundreds of single B cells sorted by flow cytometry. Infection with any variant elicited similar cross-binding antibody responses exhibiting a conserved hierarchy of epitope immunodominance. Furthermore, convergent V gene usage and similar public B cell clones were elicited regardless of infecting variant. These convergent responses despite antigenic variation may account for the continued efficacy of vaccines based on a single ancestral variant.


Asunto(s)
COVID-19 , Región Variable de Inmunoglobulina , Humanos , Epítopos/genética , SARS-CoV-2/genética , Células Clonales , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus/genética
4.
bioRxiv ; 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36263060

RESUMEN

The emergence of SARS-CoV-2 variants in the Omicron lineage with large numbers of substitutions in the spike protein that can evade antibody neutralization has resulted in diminished vaccine efficacy and persistent transmission. One strategy to broaden vaccine-induced immunity is to administer bivalent vaccines that encode for spike proteins from both historical and newly-emerged variant strains. Here, we evaluated the immunogenicity and protective efficacy of two bivalent vaccines that recently were authorized for use in Europe and the United States and contain two mRNAs encoding Wuhan-1 and either BA.1 (mRNA-1273.214) or BA.4/5 (mRNA-1273.222) spike proteins. As a primary immunization series in BALB/c mice, both bivalent vaccines induced broader neutralizing antibody responses than the constituent monovalent vaccines (mRNA-1273 [Wuhan-1], mRNA-1273.529 [BA.1], and mRNA-1273-045 [BA.4/5]). When administered to K18-hACE2 transgenic mice as a booster at 7 months after the primary vaccination series with mRNA-1273, the bivalent vaccines induced greater breadth and magnitude of neutralizing antibodies compared to an mRNA-1273 booster. Moreover, the response in bivalent vaccine-boosted mice was associated with increased protection against BA.5 infection and inflammation in the lung. Thus, boosting with bivalent Omicron-based mRNA-1273.214 or mRNA-1273.222 vaccines enhances immunogenicity and protection against currently circulating SARS-CoV-2 strains.

5.
Sci Rep ; 12(1): 17876, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36284200

RESUMEN

The broadly neutralizing antibody (bNAb) CAP256-VRC26.25 has exceptional potency against HIV-1 and has been considered for clinical use. During the characterization and production of this bNAb, we observed several unusual features. First, the antibody appeared to adhere to pipette tips, requiring tips to be changed during serial dilution to accurately measure potency. Second, during production scale-up, proteolytic cleavage was discovered to target an extended heavy chain loop, which was attributed to a protease in spent medium from 2-week culture. To enable large scale production, we altered the site of cleavage via a single amino acid change, K100mA. The resultant antibody retained potency and breadth while avoiding protease cleavage. We also added the half-life extending mutation LS, which improved the in vivo persistence in animal models, but did not impact neutralization activity; we observed the same preservation of neutralization for bNAbs VRC01, N6, and PGDM1400 with LS on a 208-virus panel. The final engineered antibody, CAP256V2LS, retained the extraordinary neutralization potency of the parental antibody, had a favorable pharmacokinetic profile in animal models, and was negative in in vitro assessment of autoreactivity. CAP256V2LS has the requisite potency, developability and suitability for scale-up, allowing its advancement as a clinical candidate.


Asunto(s)
Infecciones por VIH , VIH-1 , Animales , Anticuerpos ampliamente neutralizantes , Semivida , Anticuerpos Neutralizantes , Anticuerpos Anti-VIH , Péptido Hidrolasas , Aminoácidos
6.
bioRxiv ; 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35378757

RESUMEN

An important consequence of infection with a SARS-CoV-2 variant is protective humoral immunity against other variants. The basis for such cross-protection at the molecular level is incompletely understood. Here we characterized the repertoire and epitope specificity of antibodies elicited by Beta, Gamma and ancestral variant infection and assessed their cross-reactivity to these and the more recent Delta and Omicron variants. We developed a high-throughput approach to obtain immunoglobulin sequences and produce monoclonal antibodies for functional assessment from single B cells. Infection with any variant elicited similar cross-binding antibody responses exhibiting a remarkably conserved hierarchy of epitope immunodominance. Furthermore, convergent V gene usage and similar public B cell clones were elicited regardless of infecting variant. These convergent responses despite antigenic variation may represent a general immunological principle that accounts for the continued efficacy of vaccines based on a single ancestral variant.

7.
JCI Insight ; 7(8)2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35316213

RESUMEN

BackgroundSARS-CoV-2 infections are frequently milder in children than adults, suggesting that immune responses may vary with age. However, information is limited regarding SARS-CoV-2 immune responses in young children.MethodsWe compared receptor binding domain-binding antibody (RBDAb) titers and SARS-CoV-2-neutralizing antibody titers, measured by pseudovirus-neutralizing antibody assay in serum specimens obtained from children aged 0-4 years and 5-17 years and in adults aged 18-62 years at the time of enrollment in a prospective longitudinal household study of SARS-CoV-2 infection.ResultsAmong 56 seropositive participants at enrollment, children aged 0-4 years had more than 10-fold higher RBDAb titers than adults (416 vs. 31, P < 0.0001) and the highest RBDAb titers in 11 of 12 households with seropositive children and adults. Children aged 0-4 years had only 2-fold higher neutralizing antibody than adults, resulting in higher binding-to-neutralizing antibody ratios compared with adults (2.36 vs. 0.35 for ID50, P = 0.0004).ConclusionThese findings suggest that young children mount robust antibody responses to SARS-CoV-2 following community infections. Additionally, these results support using neutralizing antibody to measure the immunogenicity of COVID-19 vaccines in children aged 0-4 years.FundingCDC (award 75D30120C08737).


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Formación de Anticuerpos , Vacunas contra la COVID-19 , Niño , Preescolar , Humanos , Estudios Prospectivos
8.
STAR Protoc ; 3(1): 101180, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35243372

RESUMEN

Using the VRC01-class of anti-HIV-1 broadly neutralizing antibodies (bnAbs) elicited in sequentially immunized Ig-humanized mice as an example, we describe a protocol to identify key mutations for bnAb function by point mutagenesis and antibody binding and neutralization assays. We also describe steps to monitor how the key mutations arise in response to specific immunogens, which is critical for vaccine evaluation and design, via longitudinal antibody mutation profiling. This protocol can be customized for other V-gene-specific bnAbs and animal models. For complete details on the use and execution of this profile, please refer to Chen et al. (2021).


Asunto(s)
Infecciones por VIH , VIH-1 , Animales , Anticuerpos Neutralizantes , Anticuerpos ampliamente neutralizantes , Anticuerpos Anti-VIH , VIH-1/genética , Inmunización , Inmunoglobulinas/inmunología , Ratones , Mutación
10.
Cell Rep ; 38(1): 110199, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34986348

RESUMEN

Broadly neutralizing antibodies (bNAbs) represent an alternative to drug therapy for the treatment of HIV-1 infection. Immunotherapy with single bNAbs often leads to emergence of escape variants, suggesting a potential benefit of combination bNAb therapy. Here, a trispecific bNAb reduces viremia 100- to 1000-fold in viremic SHIV-infected macaques. After treatment discontinuation, viremia rebounds transiently and returns to low levels, through CD8-mediated immune control. These viruses remain sensitive to the trispecific antibody, despite loss of sensitivity to one of the parental bNAbs. Similarly, the trispecific bNAb suppresses the emergence of resistance in viruses derived from HIV-1-infected subjects, in contrast to parental bNAbs. Trispecific HIV-1 neutralizing antibodies, therefore, mediate potent antiviral activity in vivo and may minimize the potential for immune escape.


Asunto(s)
Anticuerpos ampliamente neutralizantes/inmunología , Anticuerpos ampliamente neutralizantes/uso terapéutico , Anticuerpos Anti-VIH/uso terapéutico , Evasión Inmune/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/terapia , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Antivirales/uso terapéutico , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Humanos , Inmunoterapia/métodos , Macaca mulatta , Células THP-1 , Viremia/prevención & control , Viremia/terapia
11.
medRxiv ; 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34931200

RESUMEN

The Omicron variant of SARS-CoV-2 is raising concerns because of its increased transmissibility and potential for reduced susceptibility to antibody neutralization. To assess the potential risk of this variant to existing vaccines, serum samples from mRNA-1273 vaccine recipients were tested for neutralizing activity against Omicron and compared to neutralization titers against D614G and Beta in live virus and pseudovirus assays. Omicron was 41-84-fold less sensitive to neutralization than D614G and 5.3-7.4-fold less sensitive than Beta when assayed with serum samples obtained 4 weeks after 2 standard inoculations with 100 µg mRNA-1273. A 50 µg boost increased Omicron neutralization titers and may substantially reduce the risk of symptomatic vaccine breakthrough infections.

12.
Science ; 374(6573): 1343-1353, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34672695

RESUMEN

Neutralizing antibody responses gradually wane against several variants of concern (VOCs) after vaccination with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine messenger RNA-1273 (mRNA-1273). We evaluated the immune responses in nonhuman primates that received a primary vaccination series of mRNA-1273 and were boosted about 6 months later with either homologous mRNA-1273 or heterologous mRNA-1273.ß, which encompasses the spike sequence of the B.1.351 Beta variant. After boost, animals had increased neutralizing antibody responses across all VOCs, which was sustained for at least 8 weeks after boost. Nine weeks after boost, animals were challenged with the SARS-CoV-2 Beta variant. Viral replication was low to undetectable in bronchoalveolar lavage and significantly reduced in nasal swabs in all boosted animals, suggesting that booster vaccinations may be required to sustain immunity and protection.


Asunto(s)
Vacuna nCoV-2019 mRNA-1273/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Inmunogenicidad Vacunal , SARS-CoV-2/inmunología , Eficacia de las Vacunas , Vacuna nCoV-2019 mRNA-1273/administración & dosificación , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/análisis , Anticuerpos Antivirales/sangre , Líquido del Lavado Bronquioalveolar/inmunología , Líquido del Lavado Bronquioalveolar/virología , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Inmunidad Mucosa , Inmunización Secundaria , Macaca mulatta , Células B de Memoria/inmunología , Nariz/inmunología , Nariz/virología , ARN Viral/análisis , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología , Células T Auxiliares Foliculares/inmunología , Células TH1/inmunología , Replicación Viral
13.
Science ; 373(6561): 1372-1377, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34385356

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutations may diminish vaccine-induced protective immune responses, particularly as antibody titers wane over time. Here, we assess the effect of SARS-CoV-2 variants B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.429 (Epsilon), B.1.526 (Iota), and B.1.617.2 (Delta) on binding, neutralizing, and angiotensin-converting enzyme 2 (ACE2)­competing antibodies elicited by the messenger RNA (mRNA) vaccine mRNA-1273 over 7 months. Cross-reactive neutralizing responses were rare after a single dose. At the peak of response to the second vaccine dose, all individuals had responses to all variants. Binding and functional antibodies against variants persisted in most subjects, albeit at low levels, for 6 months after the primary series of the mRNA-1273 vaccine. Across all assays, B.1.351 had the lowest antibody recognition. These data complement ongoing studies to inform the potential need for additional boost vaccinations.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/inmunología , SARS-CoV-2/inmunología , Vacuna nCoV-2019 mRNA-1273 , Adolescente , Adulto , Anciano , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Reacciones Cruzadas , Humanos , Evasión Inmune , Inmunización Secundaria , Inmunogenicidad Vacunal , Persona de Mediana Edad , Factores de Tiempo , Adulto Joven
14.
bioRxiv ; 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34426813

RESUMEN

Neutralizing antibody responses gradually wane after vaccination with mRNA-1273 against several variants of concern (VOC), and additional boost vaccinations may be required to sustain immunity and protection. Here, we evaluated the immune responses in nonhuman primates that received 100 µg of mRNA-1273 vaccine at 0 and 4 weeks and were boosted at week 29 with mRNA-1273 (homologous) or mRNA-1273.ß (heterologous), which encompasses the spike sequence of the B.1.351 (beta or ß) variant. Reciprocal ID 50 pseudovirus neutralizing antibody geometric mean titers (GMT) against live SARS-CoV-2 D614G and the ß variant, were 4700 and 765, respectively, at week 6, the peak of primary response, and 644 and 553, respectively, at a 5-month post-vaccination memory time point. Two weeks following homologous or heterologous boost ß-specific reciprocal ID 50 GMT were 5000 and 3000, respectively. At week 38, animals were challenged in the upper and lower airway with the ß variant. Two days post-challenge, viral replication was low to undetectable in both BAL and nasal swabs in most of the boosted animals. These data show that boosting with the homologous mRNA-1273 vaccine six months after primary immunization provides up to a 20-fold increase in neutralizing antibody responses across all VOC, which may be required to sustain high-level protection against severe disease, especially for at-risk populations. ONE-SENTENCE SUMMARY: mRNA-1273 boosted nonhuman primates have increased immune responses and are protected against SARS-CoV-2 beta infection.

15.
Science ; 373(6556)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34210892

RESUMEN

The emergence of highly transmissible SARS-CoV-2 variants of concern (VOCs) that are resistant to therapeutic antibodies highlights the need for continuing discovery of broadly reactive antibodies. We identified four receptor binding domain-targeting antibodies from three early-outbreak convalescent donors with potent neutralizing activity against 23 variants, including the B.1.1.7, B.1.351, P.1, B.1.429, B.1.526, and B.1.617 VOCs. Two antibodies are ultrapotent, with subnanomolar neutralization titers [half-maximal inhibitory concentration (IC50) 0.3 to 11.1 nanograms per milliliter; IC80 1.5 to 34.5 nanograms per milliliter). We define the structural and functional determinants of binding for all four VOC-targeting antibodies and show that combinations of two antibodies decrease the in vitro generation of escape mutants, suggesting their potential in mitigating resistance development.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/química , Anticuerpos Antivirales/metabolismo , Afinidad de Anticuerpos , Reacciones Antígeno-Anticuerpo , COVID-19/virología , Humanos , Evasión Inmune , Fragmentos Fab de Inmunoglobulinas/inmunología , Fragmentos Fab de Inmunoglobulinas/metabolismo , Mutación , Pruebas de Neutralización , Dominios Proteicos , Receptores de Coronavirus/antagonistas & inhibidores , Receptores de Coronavirus/metabolismo , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
16.
bioRxiv ; 2021 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-34031659

RESUMEN

SARS-CoV-2 mutations may diminish vaccine-induced protective immune responses, and the durability of such responses has not been previously reported. Here, we present a comprehensive assessment of the impact of variants B.1.1.7, B.1.351, P.1, B.1.429, and B.1.526 on binding, neutralizing, and ACE2-blocking antibodies elicited by the vaccine mRNA-1273 over seven months. Cross-reactive neutralizing responses were rare after a single dose of mRNA-1273. At the peak of response to the second dose, all subjects had robust responses to all variants. Binding and functional antibodies against variants persisted in most subjects, albeit at low levels, for 6 months after the primary series of mRNA-1273. Across all assays, B.1.351 had the greatest impact on antibody recognition, and B.1.1.7 the least. These data complement ongoing studies of clinical protection to inform the potential need for additional boost vaccinations. ONE-SENTENCE SUMMARY: Most mRNA-1273 vaccinated individuals maintained binding and functional antibodies against SARS-CoV-2 variants for 6 months.

18.
mBio ; 12(2)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33785631

RESUMEN

The human immunodeficiency virus type 1 (HIV-1) envelope trimer maintains a closed, metastable configuration to protect vulnerable epitopes from neutralizing antibodies. Here, we identify key hydrophobic constraints at the trimer apex that function as global stabilizers of the HIV-1 envelope spike configuration. Mutation of individual residues within four hydrophobic clusters that fasten together the V1V2, V3, and C4 domains at the apex of gp120 dramatically increases HIV-1 sensitivity to weak and restricted neutralizing antibodies targeting epitopes that are largely concealed in the prefusion Env spike, consistent with the adoption of a partially open trimer configuration. Conversely, the same mutations decrease the sensitivity to broad and potent neutralizing antibodies that preferentially recognize the closed trimer. Sera from chronically HIV-infected patients neutralize open mutants with enhanced potency, compared to the wild-type virus, suggesting that a large fraction of host-generated antibodies target concealed epitopes. The identification of structural constraints that maintain the HIV-1 envelope in an antibody-protected state may inform the design of a protective vaccine.IMPORTANCE Elucidating the structure and function of the HIV-1 envelope proteins is critical for the design of an effective vaccine. Despite the availability of many high-resolution structures, key functional correlates in the envelope trimer remain undefined. We utilized a combination of structural analysis, in silico energy calculation, mutagenesis, and neutralization profiling to dissect the functional anatomy of the trimer apex, which acts as a global regulator of the HIV-1 spike conformation. We identify four hydrophobic clusters that stabilize the spike in a tightly closed configuration and, thereby, play a critical role in protecting it from the reach of neutralizing antibodies.


Asunto(s)
VIH-1/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH , Infecciones por VIH/virología , VIH-1/química , VIH-1/inmunología , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Mutación , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
19.
Immunity ; 54(2): 324-339.e8, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33453152

RESUMEN

Vaccine elicitation of broadly neutralizing antibodies (bnAbs) is a key HIV-research goal. The VRC01 class of bnAbs targets the CD4-binding site on the HIV-envelope trimer and requires extensive somatic hypermutation (SHM) to neutralize effectively. Despite substantial progress, vaccine-induced VRC01-class antibodies starting from unmutated precursors have exhibited limited neutralization breadth, particularly against viruses bearing glycan on loop D residue N276 (glycan276), present on most circulating strains. Here, using sequential immunization of immunoglobulin (Ig)-humanized mice expressing diverse unmutated VRC01-class antibody precursors, we elicited serum responses capable of neutralizing viruses bearing glycan276 and isolated multiple lineages of VRC01-class bnAbs, including two with >50% breadth on a 208-strain panel. Crystal structures of representative bnAbs revealed the same mode of recognition as known VRC01-class bnAbs. Structure-function studies further pinpointed key mutations and correlated their induction with specific immunizations. VRC01-class bnAbs can thus be matured by sequential immunization from unmutated ancestors to >50% breadth, and we delineate immunogens and regimens inducing key SHM.


Asunto(s)
Vacunas contra el SIDA/inmunología , Linfocitos B/inmunología , Anticuerpos ampliamente neutralizantes/metabolismo , Anticuerpos Anti-VIH/metabolismo , Infecciones por VIH/inmunología , VIH-1/fisiología , Mutación/genética , Animales , Anticuerpos ampliamente neutralizantes/genética , Modelos Animales de Enfermedad , Células HEK293 , Anticuerpos Anti-VIH/genética , Humanos , Activación de Linfocitos , Ratones , Ratones Transgénicos , Hipermutación Somática de Inmunoglobulina , Vacunación
20.
medRxiv ; 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34981066

RESUMEN

SARS-CoV-2 infections are frequently milder in children than adults, suggesting that immune responses may vary with age. However, information is limited regarding SARS-CoV-2 immune responses in young children. We compared Receptor Binding Domain binding antibody (RBDAb) and SARS-CoV-2 neutralizing antibody (neutAb) in children aged 0-4 years, 5-17 years, and in adults aged 18-62 years in a SARS-CoV-2 household study. Among 55 participants seropositive at enrollment, children aged 0-4 years had >10-fold higher RBDAb titers than adults (373 vs.35, P <0.0001), and the highest RBDAb titers in 11/12 households with seropositive children and adults. Children aged 0-4 years had 2-fold higher neutAb than adults, resulting in higher binding to neutralizing (B/N)Ab ratios compared to adults (1.9 vs. 0.4 for ID 50 , P=0.0002). Findings suggest that young children mount robust antibody responses to SARS-CoV-2 following community infections. Additionally, these results support using neutAb to measure the immunogenicity of COVID-19 vaccines in children aged 0-4 years.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...