Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Clin Case Rep ; 12(6): e9071, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38863867

RESUMEN

In chronic heart failure, dilutional anemia and hypervolemia may occur due to plasma volume expansion, the latter sometimes exacerbated by an increase in red cell volume. Diagnosis and a therapeutic strategy require determination of vascular volumes.

2.
Transfusion ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884363

RESUMEN

BACKGROUND: During whole blood donation (BD), 500 mL of blood is drawn. The time interval between two BDs is at least 8-12 weeks. This period might be insufficient for restoring hemoglobin mass (Hbmass) and iron especially in women, who generally have lower Hbmass and iron availability. Since both variables influence physical performance, this pilot study aimed to monitor Hbmass, iron status, and maximum oxygen uptake (V̇O2max) recovery in women after a single BD. STUDY DESIGN AND METHODS: In 10 women (24.7 ± 1.7 years), Hbmass, hemoglobin concentration [Hb], iron status, and V̇O2max were assessed before and up to 12 weeks after a single BD. RESULTS: BD reduced Hbmass from 562 ± 70 g to 499 ± 64 g (p < .001). Although after 8 weeks no significant mean difference was detected, 7 women had not returned to baseline after 12 weeks. [Hb] did not return to initial values (13.4 ± 0.7 g/dL) after 12 weeks (12.9 ± 0.7 g/dL, p < .01). Ferritin decreased from baseline until week 6 (40.9 ± 34.2 ng/mL vs. 12.1 ± 6.9 ng/mL, p < .05) and was not restored after 12 weeks (18.4 ± 12.7 ng/mL, p < .05), with 6 out of 10 women exhibiting iron deficiency (ferritin <15 ng/mL). V̇O2max was reduced by 213 ± 47 mL/min (7.2 ± 1.2%; p < .001) and remained below baseline after 12 weeks (3.2 ± 1.4%, p < .01). DISCUSSION: For most pre-menopausal women, 12 weeks were not sufficient to recover from BD and achieve baseline Hbmass and iron stores resulting in prolonged reduction of aerobic capacity. A subsequent BD might lead to a severe anemia.

3.
G3 (Bethesda) ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839053

RESUMEN

Many proteins undergo a post-translational lipid attachment, which increases their hydrophobicity, thus strengthening their membrane association properties or aiding in protein interactions. Geranylgeranyltransferase-I (GGTase-I) is an enzyme involved in a three-step post-translational modification (PTM) pathway that attaches a 20-carbon lipid group called geranylgeranyl at the carboxy-terminal cysteine of proteins ending in a canonical CaaL motif (C - cysteine, a - aliphatic, L - often leucine, but can be phenylalanine, isoleucine, methionine, or valine). Genetic approaches involving two distinct reporters were employed in this study to assess S. cerevisiae GGTase-I specificity, for which limited data exists, towards all 8000 CXXX combinations. Orthogonal biochemical analyses and structure-based alignments were also performed to better understand the features required for optimal target interaction. These approaches indicate that yeast GGTase-I best modifies the Cxa[L/F/I/M/V] sequence that resembles but is not an exact match for the canonical CaaL motif. We also observed that minor modification of non-canonical sequences is possible. A consistent feature associated with well-modified sequences was the presence of a non-polar a2 residue and a hydrophobic terminal residue, which are features recognized by mammalian GGTase-I. These results thus support that mammalian and yeast GGTase-I exhibit considerable shared specificity.

4.
Dis Model Mech ; 17(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38818856

RESUMEN

Prenylated proteins are prevalent in eukaryotic biology (∼1-2% of proteins) and are associated with human disease, including cancer, premature aging and infections. Prenylated proteins with a C-terminal CaaX sequence are targeted by CaaX-type prenyltransferases and proteases. To aid investigations of these enzymes and their targets, we developed Saccharomyces cerevisiae strains that express these human enzymes instead of their yeast counterparts. These strains were developed in part to explore human prenyltransferase specificity because of findings that yeast FTase has expanded specificity for sequences deviating from the CaaX consensus (i.e. atypical sequence and length). The humanized yeast strains displayed robust prenyltransferase activity against CaaX sequences derived from human and pathogen proteins containing typical and atypical CaaX sequences. The system also recapitulated prenylation of heterologously expressed human proteins (i.e. HRas and DNAJA2). These results reveal that substrate specificity is conserved for yeast and human farnesyltransferases but is less conserved for type I geranylgeranyltransferases. These yeast systems can be easily adapted for investigating the prenylomes of other organisms and are valuable new tools for helping define the human prenylome, which includes physiologically important proteins for which the CaaX modification status is unknown.


Asunto(s)
Prenilación de Proteína , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , Secuencia de Aminoácidos , Dimetilaliltranstransferasa/metabolismo , Proteínas Virales/metabolismo , Transferasas Alquil y Aril/metabolismo
5.
Drug Test Anal ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747126

RESUMEN

Accurate determination of carboxy-hemoglobin (COHb%) is essential for the assessment of hemoglobin mass (Hbmass) by CO-rebreathing. To analyze blood samples for a certain period of time after blood collection, it is necessary to know the stability of the COHb% during storage. The aim of the study was to determine the stability of COHb% at different storage temperatures over a period of up to 3 months. Twenty-five milliliters of cubital venous blood was taken from five volunteers (three females and two males) before and after inhalation of 0.8/1.0 mL/kg carbon monoxide and stored at +20°C and +4°C for 6 days and at -70°C for 12 weeks. Within the first 6 days, the blood was analyzed daily, then weekly for 12 weeks. Additionally, Hbmass was determined in 13 endurance athletes immediately after blood collection and after storage for 3 days (eight cyclists) and 7 days (five swimmers) at +20°C or +4°C. COHb% before and after CO inhalation was 1.56 ± 0.48 and 5.86 ± 1.12%, respectively, and remained unchanged over 6 days, with no difference between storage at different temperatures. The standard deviation (STD) over time was between 0.07% and 0.12%. Similarly, storage at -70°C for 12 weeks did not change COHb%, whereas STD was 0.07%. Hbmass determined immediately and, after 3 or 7 days of storage, differed by 10 ± 7 g and 15 ± 11 g corresponding to a typical error of 0.8% and 1.1%. Blood storage at +20°C and +4°C for 6 days and at -70°C for 12 weeks does not affect COHb% and has, therefore, no influence on Hbmass assessment.

6.
Int J Mol Sci ; 25(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38791363

RESUMEN

Protein farnesylation is a post-translational modification where a 15-carbon farnesyl isoprenoid is appended to the C-terminal end of a protein by farnesyltransferase (FTase). This process often causes proteins to associate with the membrane and participate in signal transduction pathways. The most common substrates of FTase are proteins that have C-terminal tetrapeptide CaaX box sequences where the cysteine is the site of modification. However, recent work has shown that five amino acid sequences can also be recognized, including the pentapeptides CMIIM and CSLMQ. In this work, peptide libraries were initially used to systematically vary the residues in those two parental sequences using an assay based on Matrix Assisted Laser Desorption Ionization-Mass Spectrometry (MALDI-MS). In addition, 192 pentapeptide sequences from the human proteome were screened using that assay to discover additional extended CaaaX-box motifs. Selected hits from that screening effort were rescreened using an in vivo yeast reporter protein assay. The X-ray crystal structure of CMIIM bound to FTase was also solved, showing that the C-terminal tripeptide of that sequence interacted with the enzyme in a similar manner as the C-terminal tripeptide of CVVM, suggesting that the tripeptide comprises a common structural element for substrate recognition in both tetrapeptide and pentapeptide sequences. Molecular dynamics simulation of CMIIM bound to FTase further shed light on the molecular interactions involved, showing that a putative catalytically competent Zn(II)-thiolate species was able to form. Bioinformatic predictions of tetrapeptide (CaaX-box) reactivity correlated well with the reactivity of pentapeptides obtained from in vivo analysis, reinforcing the importance of the C-terminal tripeptide motif. This analysis provides a structural framework for understanding the reactivity of extended CaaaX-box motifs and a method that may be useful for predicting the reactivity of additional FTase substrates bearing CaaaX-box sequences.


Asunto(s)
Biología Computacional , Biblioteca de Péptidos , Humanos , Biología Computacional/métodos , Especificidad por Sustrato , Farnesiltransferasa/metabolismo , Farnesiltransferasa/química , Oligopéptidos/química , Oligopéptidos/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Unión Proteica
7.
Bioorg Chem ; 147: 107316, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38583246

RESUMEN

Ras GTPases and other CaaX proteins undergo multiple post-translational modifications at their carboxyl-terminus. These events initiate with prenylation of a cysteine and are followed by endoproteolytic removal of the 'aaX' tripeptide and carboxylmethylation. Some CaaX proteins are only subject to prenylation, however, due to the presence of an uncleavable sequence. In this study, uncleavable sequences were used to stage Ras isoforms in a farnesylated and uncleaved state to address the impact of CaaX proteolysis on protein localization and function. This targeted strategy is more specific than those that chemically inhibit the Rce1 CaaX protease or delete the RCE1 gene because global abrogation of CaaX proteolysis impacts the entire CaaX protein proteome and effects cannot be attributed to any specific CaaX protein of the many concurrently affected. With this targeted strategy, clear mislocalization and reduced activity of farnesylated and uncleaved Ras isoforms was observed. In addition, new peptidomimetics based on cleavable Ras CaaX sequences and the uncleavable CAHQ sequence were synthesized and tested as Rce1 inhibitors using in vitro and cell-based assays. Consistently, these non-hydrolyzable peptidomimetic Rce1 inhibitors recapitulate Ras mislocalization effects when modeled on cleavable but not uncleavable CaaX sequences. These findings indicate that a prenylated and uncleavable CaaX sequence, which can be easily applied to a wide range of mammalian CaaX proteins, can be used to probe the specific impact of CaaX proteolysis on CaaX protein properties under conditions of an otherwise normally processed CaaX protein proteome.


Asunto(s)
Proteínas ras , Humanos , Proteínas ras/metabolismo , Proteínas ras/antagonistas & inhibidores , Proteínas ras/genética , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/síntesis química , Proteolisis/efectos de los fármacos , Estructura Molecular , Peptidomiméticos/farmacología , Peptidomiméticos/química , Peptidomiméticos/síntesis química , Endopeptidasas
8.
bioRxiv ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38496651

RESUMEN

Many proteins undergo a post-translational lipid attachment, which increases their hydrophobicity, thus strengthening their membrane association properties or aiding in protein interactions. Geranylgeranyltransferase-I (GGTase-I) is an enzyme involved in a three-step post-translational modification (PTM) pathway that attaches a 20-carbon lipid group called geranylgeranyl at the carboxy-terminal cysteine of proteins ending in a canonical CaaL motif (C - cysteine, a - aliphatic, L - often leucine, but can be phenylalanine, isoleucine, methionine, or valine). Genetic approaches involving two distinct reporters were employed in this study to assess S. cerevisiae GGTase-I specificity, for which limited data exists, towards all 8000 CXXX combinations. Orthogonal biochemical analyses and structure-based alignments were also performed to better understand the features required for optimal target interaction. These approaches indicate that yeast GGTase-I best modifies the Cxa[L/F/I/M/V] sequence that resembles but is not an exact match for the canonical CaaL motif. We also observed that minor modification of non-canonical sequences is possible. A consistent feature associated with well-modified sequences was the presence of a non-polar a2 residue and a hydrophobic terminal residue, which are features recognized by mammalian GGTase-I. These results thus support that mammalian and yeast GGTase-I exhibit considerable shared specificity.

9.
Entropy (Basel) ; 25(11)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37998212

RESUMEN

In George Wald's Nobel Prize acceptance speech for "discoveries concerning the primary physiological and chemical visual processes in the eye", he noted that events after the activation of rhodopsin are too slow to explain visual reception. Photoreceptor membrane phosphoglycerides contain near-saturation amounts of the omega-3 fatty acid docosahexaenoic acid (DHA). The visual response to a photon is a retinal cis-trans isomerization. The trans-state is lower in energy; hence, a quantum of energy is released equivalent to the sum of the photon and cis-trans difference. We hypothesize that DHA traps this energy, and the resulting hyperpolarization extracts the energized electron, which depolarizes the membrane and carries a function of the photon's energy (wavelength) to the brain. There, it contributes to the creation of the vivid images of our world that we see in our consciousness. This proposed revision to the visual process provides an explanation for these previously unresolved issues around the speed of information transfer and the purity of conservation of a photon's wavelength and supports observations of the unique and indispensable role of DHA in the visual process.

10.
bioRxiv ; 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37786692

RESUMEN

The C-terminal CaaX sequence (cysteine-aliphatic-aliphatic-any of several amino acids) is subject to isoprenylation on the conserved cysteine and is estimated to occur in 1-2% of proteins within yeast and human proteomes. Recently, non-canonical CaaX sequences in addition to shorter and longer length CaX and CaaaX sequences have been identified that can be prenylated. Much of the characterization of prenyltransferases has relied on the yeast system because of its genetic tractability and availability of reporter proteins, such as the a-factor mating pheromone, Ras GTPase, and Ydj1 Hsp40 chaperone. To compare the properties of yeast and human prenyltransferases, including the recently expanded target specificity of yeast farnesyltransferase, we have developed yeast strains that express human farnesyltransferase or geranylgeranyltransferase-I in lieu of their yeast counterparts. The humanized yeast strains display robust prenyltransferase activity that functionally replaces yeast prenyltransferase activity in a wide array of tests, including the prenylation of a wide variety of canonical and non-canonical human CaaX sequences, virus encoded CaaX sequences, non-canonical length sequences, and heterologously expressed human proteins HRas and DNAJA2. These results reveal highly overlapping substrate specificity for yeast and human farnesyltransferase, and mostly overlapping substrate specificity for GGTase-I. This yeast system is a valuable tool for further defining the prenylome of humans and other organisms, identifying proteins for which prenylation status has not yet been determined.

11.
Perioper Med (Lond) ; 12(1): 31, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37400931

RESUMEN

BACKGROUND: Anemia is associated with impaired physical performance and adverse perioperative outcomes. Iron-deficiency anemia is increasingly treated with intravenous iron before elective surgery. We explored the relationship between exercise capacity, anemia, and total hemoglobin mass (tHb-mass) and the response to intravenous iron in anemic patients prior to surgery. METHODS: A prospective clinical study was undertaken in patients having routine cardiopulmonary exercise testing (CPET) with a hemoglobin concentration ([Hb]) < 130 g.l-1 and iron deficiency/depletion. Patients underwent CPET and tHb-mass measurements before and a minimum of 14 days after receiving intravenous (i.v.) Ferric derisomaltose (Monofer®) at the baseline visit. Comparative analysis of hematological and CPET variables was performed pre and post-iron treatment. RESULTS: Twenty-six subjects were recruited, of whom 6 withdrew prior to study completion. The remaining 20 (9 [45%] male; mean ± SD age 68 ± 10 years) were assessed 25 ± 7 days between baseline and the final visit. Following i.v. iron, increases were seen in [Hb] (mean ± SD) from 109 ± 14 to 116 ± 12 g l-1 (mean rise 6.4% or 7.3 g l-1, p = < 0.0001, 95% CI 4.5-10.1); tHb-mass from 497 ± 134 to 546 ± 139 g (mean rise 9.3% or 49 g, p = < 0.0001, 95% CI 29.4-69.2). Oxygen consumption at anerobic threshold ([Formula: see text] O2 AT) did not change (9.1 ± 1.7 to 9.8 ± 2.5 ml kg-1 min-1, p = 0.09, 95% CI - 0.13 - 1.3). Peak oxygen consumption ([Formula: see text] O2 peak) increased from 15.2 ± 4.1 to 16 ± 4.4 ml.kg.-1 min-1, p = 0.02, 95% CI 0.2-1.8) and peak work rate increased from 93 [67-112] watts to 96 [68-122] watts (p = 0.02, 95% CI 1.3-10.8). CONCLUSION: Preoperative administration of intravenous iron to iron-deficient/deplete anemic patients is associated with increases in [Hb], tHb-mass, peak oxygen consumption, and peak work rate. Further appropriately powered prospective studies are required to ascertain whether improvements in tHb-mass and performance in turn lead to reductions in perioperative morbidity. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT 033 46213.

12.
Metabolites ; 13(5)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37233674

RESUMEN

We wanted to determine the influence of total blood volume (BV) and blood lactate quantity on lactate concentrations during incremental exercise. Twenty-six healthy, nonsmoking, heterogeneously trained females (27.5 ± 5.9 ys) performed an incremental cardiopulmonary exercise test on a cycle ergometer during which maximum oxygen uptake (V·O2max), lactate concentrations ([La-]) and hemoglobin concentrations ([Hb]) were determined. Hemoglobin mass and blood volume (BV) were determined using an optimised carbon monoxide-rebreathing method. V·O2max and maximum power (Pmax) ranged between 32 and 62 mL·min-1·kg-1 and 2.3 and 5.5 W·kg-1, respectively. BV ranged between 81 and 121 mL·kg-1 of lean body mass and decreased by 280 ± 115 mL (5.7%, p = 0.001) until Pmax. At Pmax, the [La-] was significantly correlated to the systemic lactate quantity (La-, r = 0.84, p < 0.0001) but also significantly negatively correlated to the BV (r = -0.44, p < 0.05). We calculated that the exercise-induced BV shifts significantly reduced the lactate transport capacity by 10.8% (p < 0.0001). Our results demonstrate that both the total BV and La- have a major influence on the resulting [La-] during dynamic exercise. Moreover, the blood La- transport capacity might be significantly reduced by the shift in plasma volume. We conclude, that the total BV might be another relevant factor in the interpretation of [La-] during a cardio-pulmonary exercise test.

13.
Scand J Clin Lab Invest ; 83(4): 219-226, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37154842

RESUMEN

An indispensable precondition for the determination of hemoglobin mass (Hbmass) and blood volume by CO rebreathing is complete mixing of CO in the blood. The aim of this study was to demonstrate the kinetics of CO in capillary and venous blood in different body positions and during moderate exercise. Six young subjects (4 male, 2 female) performed three 2-min CO rebreathing tests in seated (SEA) & supine (SUP) positions as well as during moderate exercise (EX) on a bicycle ergometer. Before, during, and until 15 min after CO rebreathing cubital venous and capillary blood samples were collected simultaneously and COHb% was determined. COHb% kinetics were significantly slower in SEA than in SUP or EX. Identical COHb% in capillary and venous blood were reached in SEA after 5.0 ± 2.3 min, in SUP after 3.2 ± 1.3 min and in EX after 1.9 ± 1.2 min (EX vs. SEA p < .01, SUP vs. SEA p < .05). After 7th min, Hbmass did not differ between the resting positions (capillary: SEA 766 ± 217 g, SUP 761 ± 227 g; venous: SEA 759 ± 224 g, SUP 744 ± 207 g). Under exercise, however, a higher Hbmass (p < .05) was determined (capillary: 823 ± 221 g, venous: 804 ± 226 g). In blood, the CO mixing time in the supine position is significantly shorter than in the seated position. By the 6th minute complete mixing is achieved in either position giving similar Hbmass determinations. CO-rebreathing under exercise conditions, however, leads to ∼7% higher Hbmass values.


Asunto(s)
Monóxido de Carbono , Hemoglobinas , Humanos , Masculino , Femenino , Cinética , Carboxihemoglobina , Postura
15.
G3 (Bethesda) ; 13(7)2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37119806

RESUMEN

The current understanding of farnesyltransferase (FTase) specificity was pioneered through investigations of reporters like Ras and Ras-related proteins that possess a C-terminal CaaX motif that consists of 4 amino acid residues: cysteine-aliphatic1-aliphatic2-variable (X). These studies led to the finding that proteins with the CaaX motif are subject to a 3-step post-translational modification pathway involving farnesylation, proteolysis, and carboxylmethylation. Emerging evidence indicates, however, that FTase can farnesylate sequences outside the CaaX motif and that these sequences do not undergo the canonical 3-step pathway. In this work, we report a comprehensive evaluation of all possible CXXX sequences as FTase targets using the reporter Ydj1, an Hsp40 chaperone that only requires farnesylation for its activity. Our genetic and high-throughput sequencing approach reveals an unprecedented profile of sequences that yeast FTase can recognize in vivo, which effectively expands the potential target space of FTase within the yeast proteome. We also document that yeast FTase specificity is majorly influenced by restrictive amino acids at a2 and X positions as opposed to the resemblance of CaaX motif as previously regarded. This first complete evaluation of CXXX space expands the complexity of protein isoprenylation and marks a key step forward in understanding the potential scope of targets for this isoprenylation pathway.


Asunto(s)
Transferasas Alquil y Aril , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Farnesiltransferasa/genética , Farnesiltransferasa/metabolismo , Secuencia de Aminoácidos , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Prenilación de Proteína , Proteínas/genética , Especificidad por Sustrato
16.
J Appl Physiol (1985) ; 134(6): 1321-1331, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37055035

RESUMEN

We sought to determine the effects of three treatments on hemoglobin (Hb) levels in patients with chronic mountain sickness (CMS): 1) descent to lower altitude, 2) nocturnal O2 supply, 3) administration of acetazolamide. Nineteen patients with CMS living at an altitude of 3,940 ± 130 m participated in the study, which consisted of a 3-wk intervention phase and a 4-wk postintervention phase. Six patients spent 3 wk at an altitude of 1,050 m (low altitude group, LAG), six received supplemental oxygen for 12 h overnight (oxygen group, OXG), and seven received 250 mg of acetazolamide daily (acetazolamide group, ACZG). Hemoglobin mass (Hbmass) was determined using an adapted carbon monoxide (CO) rebreathing method before, weekly during, and 4 wk postintervention. Hbmass decreased by 245 ± 116 g (P < 0.01) in the LAG and by 100 ± 38 g in OXG, and 99 ± 64 g in ACZG (P < 0.05, each), respectively. In LAG, hemoglobin concentration ([Hb]) decreased by 2.1 ± 0.8 g/dL and hematocrit by 7.4 ± 2.9% (both P < 0.01), whereas OXG and ACZG only trended toward lower values. Erythropoietin concentration ([EPO]) decreased between 81 ± 12% and 73 ± 21% in LAG at low altitude (P < 0.01) and increased by 161 ± 118% 5 days after return (P < 0.01). In OXG and ACZG, the [EPO] decrease was ∼75% and ∼50%, respectively, during the intervention (P < 0.01). Descent to low altitude (from 3,940 m to 1,050 m) is a fast-acting measure for the treatment of excessive erythrocytosis in patients with CMS, reducing Hbmass by 16% within 3 wk. Nighttime oxygen supplementation and daily acetazolamide administration are also effective, but reduce Hbmass by only 6%.NEW & NOTEWORTHY To our knowledge, this is the first study examining the effect of three different treatments [descending to lower altitude (from 3,900 m to 1,050 m), nocturnal oxygen supply, and administration of acetazolamide] on changes in hemoglobin mass in patients experiencing chronic mountain sickness (CMS). We report that descent to low altitude is a fast-acting measure for the treatment of excessive erythrocytosis in patients with CMS, reducing Hbmass by 16% within 3 wk. Nighttime oxygen supplementation and daily acetazolamide administration are also effective, but reduce Hbmass by only 6%. In all three treatments, the underlying mechanism is a reduction in plasma erythropoietin concentration due to higher oxygen availability.


Asunto(s)
Mal de Altura , Eritropoyetina , Policitemia , Humanos , Mal de Altura/tratamiento farmacológico , Policitemia/tratamiento farmacológico , Altitud , Acetazolamida/uso terapéutico , Eritropoyetina/uso terapéutico , Hemoglobinas , Oxígeno
17.
Microbiol Spectr ; 11(1): e0269222, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36602340

RESUMEN

Many CAAX proteins, such as Ras GTPase, undergo a series of posttranslational modifications at their carboxyl terminus (i.e., cysteine prenylation, endoproteolysis of AAX, and carboxylmethylation). Some CAAX proteins, however, undergo prenylation-only modification, such as Saccharomyces cerevisiae Hsp40 Ydj1. We previously observed that altering the CAAX motif of Ydj1 from prenylation-only to canonical resulted in altered Ydj1 function and localization. Here, we investigated the effects of a reciprocal change that altered the well-characterized canonical CAAX motif of S. cerevisiae Ras2 to prenylation-only. We observed that the type of CAAX motif impacted Ras2 protein levels, localization, and function. Moreover, we observed that using a prenylation-only sequence to stage hyperactive Ras2-G19V as a farnesylated and nonproteolyzed intermediate resulted in a different phenotype relative to staging by a genetic RCE1 deletion strategy that simultaneously affected many CAAX proteins. These findings suggested that a prenylation-only CAAX motif is useful for probing the specific impact of CAAX proteolysis on Ras2 under conditions where other CAAX proteins are normally modified. We propose that our strategy could be easily applied to a wide range of CAAX proteins for examining the specific impact of CAAX proteolysis on their functions. IMPORTANCE CAAX proteins are subject to multiple posttranslational modifications: cysteine prenylation, CAAX proteolysis, and carboxylmethylation. For investigations of CAAX proteolysis, this study took the novel approach of using a proteolysis-resistant CAAX sequence to stage Saccharomyces cerevisiae Ras2 GTPase in a farnesylated and nonproteolyzed state. Our approach specifically limited the effects of disrupting CAAX proteolysis to Ras2. This represented an improvement over previous methods where CAAX proteolysis was inhibited by gene knockout, small interfering RNA knockdown, or biochemical inhibition of the Rce1 CAAX protease, which can lead to pleiotropic and unclear attribution of effects due to the action of Rce1 on multiple CAAX proteins. Our approach yielded results that demonstrated specific impacts of CAAX proteolysis on the function, localization, and other properties of Ras2, highlighting the utility of this approach for investigating the impact of CAAX proteolysis in other protein contexts.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteolisis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cisteína/metabolismo , Procesamiento Proteico-Postraduccional , Endopeptidasas/metabolismo , Proteínas/genética , Proteínas ras/genética , Proteínas ras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Front Physiol ; 13: 895805, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36237526

RESUMEN

We aimed to continuously determine the stroke volume (SV) and blood volume (BV) during incremental exercise to evaluate the individual SV course and to correlate both variables across different exercise intensities. Twenty-six females with heterogeneous endurance capacities performed an incremental cycle ergometer test to continuously determine the oxygen uptake (V̇O2), cardiac output (Q̇) and changes in BV. Q̇ was determined by impedance cardiography and resting cardiac dimensions by 2D echocardiography. Hemoglobin mass and BV were determined using a carbon monoxide-rebreathing method. V̇O2max ranged from 32 to 62 mL·kg-1·min-1. Q̇max and SVmax ranged from 16.4 to 31.6 L·min-1 and 90-170 mL, respectively. The SV significantly increased from rest to 40% and from 40% to 80% V̇O2max. Changes in SV from rest to 40% V̇O2max were negatively (r = -0.40, p = 0.05), between 40% and 80% positively correlated with BV (r = 0.45, p < 0.05). At each exercise intensity, the SV was significantly correlated with the BV and the cardiac dimensions, i.e., left ventricular muscle mass (LVMM) and end-diastolic diameter (LVEDD). The BV decreased by 280 ± 115 mL (5.7%, p = 0.001) until maximum exercise. We found no correlation between the changes in BV and the changes in SV between each exercise intensity. The hemoglobin concentration [Hb] increased by 0.8 ± 0.3 g·dL-1, the capillary oxygen saturation (ScO2) decreased by 4.0% (p < 0.001). As a result, the calculated arterial oxygen content significantly increased (18.5 ± 1.0 vs. 18.9 ± 1.0 mL·dL-1, p = 0.001). A 1 L higher BV at V̇O2max was associated with a higher SVmax of 16.2 mL (r = 0.63, p < 0.001) and Q̇max of 2.5 L·min-1 (r = 0.56, p < 0.01). In conclusion, the SV strongly correlates with the cardiac dimensions, which might be the result of adaptations to an increased volume load. The positive effect of a high BV on SV is particularly noticeable at high and severe intensity exercise. The theoretically expected reduction in V̇O2max due to lower SV as a consequence of reduced BV is apparently compensated by the increased arterial oxygen content due to a higher [Hb].

19.
Glob Chang Biol ; 28(20): 5928-5944, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35795901

RESUMEN

Central Europe has been experiencing unprecedented droughts during the last decades, stressing the decrease in tree water availability. However, the assessment of physiological drought stress is challenging, and feedback between soil and vegetation is often omitted because of scarce belowground data. Here we aimed to model Swiss forests' water availability during the 2015 and 2018 droughts by implementing the mechanistic soil-vegetation-atmosphere-transport (SVAT) model LWF-Brook90 taking advantage of regionalized depth-resolved soil information. We calibrated the model against soil matric potential data measured from 2014 to 2018 at 44 sites along a Swiss climatic and edaphic drought gradient. Swiss forest soils' storage capacity of plant-available water ranged from 53 mm to 341 mm, with a median of 137 ± 42 mm down to the mean potential rooting depth of 1.2 m. Topsoil was the primary water source. However, trees switched to deeper soil water sources during drought. This effect was less pronounced for coniferous trees with a shallower rooting system than for deciduous trees, which resulted in a higher reduction of actual transpiration (transpiration deficit) in coniferous trees. Across Switzerland, forest trees reduced the transpiration by 23% (compared to potential transpiration) in 2015 and 2018, maintaining annual actual transpiration comparable to other years. Together with lower evaporative fluxes, the Swiss forests did not amplify the blue water deficit. The 2018 drought, characterized by a higher and more persistent transpiration deficit than in 2015, triggered widespread early wilting across Swiss forests that was better predicted by the SVAT-derived mean soil matric potential in the rooting zone than by climatic predictors. Such feedback-driven quantification of ecosystem water fluxes in the soil-plant-atmosphere continuum will be crucial to predicting physiological drought stress under future climate extremes.


Asunto(s)
Sequías , Suelo , Ecosistema , Bosques , Plantas , Suiza , Árboles/fisiología , Agua/fisiología
20.
PLoS One ; 17(6): e0270128, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35749383

RESUMEN

Protein prenylation by farnesyltransferase (FTase) is often described as the targeting of a cysteine-containing motif (CaaX) that is enriched for aliphatic amino acids at the a1 and a2 positions, while quite flexible at the X position. Prenylation prediction methods often rely on these features despite emerging evidence that FTase has broader target specificity than previously considered. Using a machine learning approach and training sets based on canonical (prenylated, proteolyzed, and carboxymethylated) and recently identified shunted motifs (prenylation only), this study aims to improve prenylation predictions with the goal of determining the full scope of prenylation potential among the 8000 possible Cxxx sequence combinations. Further, this study aims to subdivide the prenylated sequences as either shunted (i.e., uncleaved) or cleaved (i.e., canonical). Predictions were determined for Saccharomyces cerevisiae FTase and compared to results derived using currently available prenylation prediction methods. In silico predictions were further evaluated using in vivo methods coupled to two yeast reporters, the yeast mating pheromone a-factor and Hsp40 Ydj1p, that represent proteins with canonical and shunted CaaX motifs, respectively. Our machine learning-based approach expands the repertoire of predicted FTase targets and provides a framework for functional classification.


Asunto(s)
Transferasas Alquil y Aril , Saccharomyces cerevisiae , Transferasas Alquil y Aril/genética , Farnesiltransferasa/genética , Farnesiltransferasa/metabolismo , Aprendizaje Automático , Prenilación de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...