Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
ACS Omega ; 8(23): 20404-20411, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37323413

RESUMEN

Porous polymeric microspheres are an emerging class of materials, offering stimuli-responsive cargo uptake and release. Herein, we describe a new approach to fabricate porous microspheres based on temperature-induced droplet formation and light-induced polymerization. Microparticles were prepared by exploiting the partial miscibility of a thermotropic liquid crystal (LC) mixture composed of 4-cyano-4'-pentylbiphenyl (5CB, unreactive mesogens) with 2-methyl-1,4-phenylene bis4-[3-(acryloyloxy)propoxy] benzoate (RM257, reactive mesogens) in methanol (MeOH). Isotropic 5CB/RM257-rich droplets were generated by cooling below the binodal curve (20 °C), and the isotropic-to-nematic transition occurred after cooling below 0 °C. The resulting 5CB/RM257-rich droplets with radial configuration were subsequently polymerized under UV light, resulting in nematic microparticles. Upon heating the mixture, the 5CB mesogens underwent a nematic-isotropic transition and eventually became homogeneous with MeOH, while the polymerized RM257 preserved its radial configuration. Repeated cycles of cooling and heating resulted in swelling and shrinking of the porous microparticles. The use of a reversible materials templating approach to obtain porous microparticles provides new insights into binary liquid manipulation and potential for microparticle production.

2.
Soft Matter ; 17(4): 947-954, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33284300

RESUMEN

Liquid-in-liquid droplets are typically generated by the partitioning of immiscible fluids, e.g. by mechanical shearing with macroscopic homogenisers or microfluidic flow focussing. In contrast, partially miscible liquids with a critical solution temperature display a temperature-dependent mixing behaviour. In this work, we demonstrate how, for a blend of methanol (MeOH) and the thermotropic liquid crystal (LC) 4-Cyano-4'-pentylbiphenyl (5CB), cooling from a miscible to an immiscible state allows the controlled formation of microdroplets. A near-room-temperature-induced phase separation leads to nucleation, growth and coalescence of mesogen-rich droplets. The size and number of the droplets is tunable on the microscopic scale by variation of temperature quench depth and cooling rate. Further cooling induces a phase transition to nematic droplets with radial configuration, well-defined sizes and stability over the course of an hour. This temperature-induced approach offers a scalable and reversible alternative to droplet formation with relevance in diagnostics, optoelectronics, materials templating and extraction processes.

3.
Nanoscale ; 12(35): 18455-18462, 2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32941587

RESUMEN

Mesoporous inorganic thin films are promising materials architectures for a variety of applications, including sensing, catalysis, protective coatings, energy generation and storage. In many cases, precise control over a bicontinuous porous network on the 10 nm length scale is crucial for their operation. A particularly promising route for structure formation utilizes block copolymer (BCP) micelles in solution as sacrificial structure-directing agents for the co-assembly of inorganic precursors. This method offers pore size control via the molecular weight of the pore forming block and is compatible with a broad materials library. On the other hand, the molecular weight dependence impedes continuous pore tuning and the intrinsic polymer dispersity presents challenges to the pore size homogeneity. To this end, we demonstrate how chromatographic fractionation of BCPs provides a powerful method to control the pore size and dispersity of the resulting mesoporous thin films. We apply a semi-preparative size exclusion chromatographic fractionation to a polydisperse poly(isobutylene)-block-poly(ethylene oxide) (PIB-b-PEO) BCP obtained from scaled-up synthesis. The isolation of BCP fractions with distinct molecular weight and narrowed dispersity allowed us to not only tune the characteristic pore size from 9.1 ± 1.5 to 14.1 ± 2.1 nm with the identical BCP source material, but also significantly reduce the pore size dispersity compared to the non-fractionated BCP. Our findings offer a route to obtain a library of monodisperse BCPs from a polydisperse feedstock and provide important insights on the direct relationship between macromolecular characteristics and the resulting structure-directed mesopores, in particular related to dispersity.

4.
Langmuir ; 35(43): 14074-14082, 2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31577151

RESUMEN

The functionality and applications of mesoporous inorganic films are closely linked to their mesopore dimensions. For material architectures derived from a block copolymer (BCP) micelle coassembly, the pore size is typically manipulated by changing the molecular weight corresponding to the pore-forming block. However, bespoke BCP synthesis is often a costly and time-consuming process. An alternative method for pore size tuning involves the use of swelling agents, such as homopolymers (HPs), which selectively interact with the core-forming block to increase the micelle size in solution. In this work, poly(isobutylene)-block-poly(ethylene oxide) micelles were swollen with poly(isobutylene) HP in solution and coassembled with aluminosilicate sol with the aim of increasing the resulting pore dimensions. An analytical approach implementing spectroscopic ellipsometry (SE) and ellipsometric porosimetry (EP) alongside atomic force microscopy (AFM) and small-angle X-ray scattering (SAXS) in transmission and grazing-incidence (GISAXS) modes enabled us to study the material evolution from solution processing through the manifestation of the mesoporous inorganic film after BCP removal. The in-depth SE/EP analysis evidenced an increase of more than 45% in mesopore diameter with HP swelling and a consistent scaling of the overall void volume and number of pores. Importantly, our analytical toolbox enabled us to study the effect of swelling on the connecting necks between adjacent pores, with observed increases as high as ≈35%, offering novel pathways to sensing, electrochemical, and other mass-transfer-dependent applications.

5.
ACS Appl Mater Interfaces ; 11(21): 19308-19314, 2019 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-31001970

RESUMEN

The processing of mesoporous inorganic coatings typically requires a high-temperature calcination step to remove organic precursors that are essential during the material assembly. Lowering the fabrication energy costs and cutting back on the necessary resources would provide a greater scope for the deployment in applications such as architectural glass, optical components, photovoltaic cells, and energy storage, as well as further compatibilize substrates with low temperature stability. Organic removal methods based on UV-ozone treatment are increasing in popularity, but concerns remain regarding large-scale ozone generation and usage of mercury-containing UV lamps. To this end, we present a method that relies on non-ozone-generating UV radiation at 254 nm (UV254) and incorporation of small amounts of photocatalytic material in the formulation, here demonstrated with TiO2 nanocrystals. At concentrations as low as 5 wt % relative to the main inorganic aluminosilicate material, the TiO2 nanocrystals catalyze a "cold combustion" of the organic components under UV254 irradiation to reveal a porous inorganic network. Using block copolymer-based co-assembly in conjunction with photocatalytic template removal, we produce well-defined mesoporous inorganic thin films with controlled porosity and refractive index values, where the required processing time is governed by the amount of TiO2 loading. This approach provides an inexpensive, flexible, and environmentally friendly alternative to traditional organic removal techniques, such as UV-ozone degradation and thermal calcination.

6.
ACS Appl Mater Interfaces ; 10(12): 10315-10321, 2018 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-29441787

RESUMEN

Generating mesoporous films with adequate film thickness and refractive index is a common method to achieve amplitude and phase matching in low-cost interference-based antireflective coatings (ARCs). For high-surface-energy materials, pores on the 2-50 nm (i.e., on the subwavelength scale) are subject to capillary condensation by surrounding gas phase water molecules, which hampers their functioning. In this work, we examine the effect of relative humidity on mesoporous ARCs and present a simple method for the preparation of ARCs with robust operation under variable conditions. The materials route is based on the generation of well-defined porous aluminosilicate networks by block copolymer co-assembly with poly(isobutylene)- block-poly(ethylene oxide) and postsynthesis grafting of trichloro(octyl)silane molecules to the pore walls. The functionalized films exhibited a maximum transmittance value of 99.8%, with an average transmittance of 99.1% in the visible wavelength range from 400 to 700 nm. Crucially, the antireflection performance was maintained at high humidity values, with an average transmittance decrease of only 0.2% and maximum values maintained at 99.7%. This compared to maximum and average losses of 3.6 and 2.7%, respectively, for nonfunctionalized reference samples. The ARCs were shown to retain their optical properties within 50 humidity cycles, indicating long-term stability against fluctuating environmental conditions.

7.
ACS Nano ; 5(11): 8579-90, 2011 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-22004659

RESUMEN

The efficiency of organic bulk heterojunction solar cells strongly depends on the multiscale morphology of the interpenetrating polymer-fullerene network. Understanding the molecular assembly and the identification of influencing parameters is essential for a systematic optimization of such devices. Here, we investigate the molecular ordering during the drying of doctor-bladed polymer-fullerene blends on PEDOT:PSS-coated substrates simultaneously using in situ grazing incidence X-ray diffraction (GIXD) and laser reflectometry. In the process of blend crystallization, we observe the nucleation of well-aligned P3HT crystallites in edge-on orientation at the interface at the instant when P3HT solubility is crossed. A comparison of the real-time GIXD study at ternary blends with the binary phase diagrams of the drying blend film gives evidence of strong polymer-fullerene interactions that impede the crystal growth of PCBM, resulting in the aggregation of PCBM in the final drying stage. A systematic dependence of the film roughness on the drying time after crossing P3HT solubility has been shown. The highest efficiencies have been observed for slow drying at low temperatures which showed the strongest P3HT interchain π-π-ordering along the substrate surface. By adding the "unfriendly" solvent cyclohexanone to a chlorobenzene solution of P3HT:PCBM, the solubility can be crossed prior to the drying process. Such solutions exhibit randomly orientated crystalline structures in the freshly cast film which results in a large crystalline orientation distribution in the dry film that has been shown to be beneficial for solar cell performance.

8.
J Agric Food Chem ; 55(26): 11044-51, 2007 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-18038994

RESUMEN

The aim of the present research was to identify principal parameters determining the oxidative stability of microencapsulated fish oil. Microcapsules were prepared by spray-drying using different types of n-octenylsuccinate-derivatized starch, gum Arabic, sugar beet pectin, sodium caseinate, and/or glucose syrup. Two principal components to classify the different microcapsules accounting for up to 79% of the variance were identified. The principal components were determined by physicochemical parameters reflecting the emulsifying ability of the encapsulant and the drying behavior of the parent emulsion. Microcapsules, which were identified by principal component analysis to be significantly different, exhibited a low stability upon storage, showing that the principal components and, thus, the underlying physicochemical parameters analyzed in the present study are correlated with core material stability.


Asunto(s)
Aceites de Pescado/química , Cápsulas , Fenómenos Químicos , Química Física , Desecación/métodos , Estabilidad de Medicamentos , Emulsiones/química , Microscopía Electrónica de Rastreo , Oxidación-Reducción , Tamaño de la Partícula , Tecnología Farmacéutica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA