Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 128(11): 110601, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35363006

RESUMEN

The concept of passivity has been conceived to set bounds on the evolution of microscopic systems initialized in thermal states. We experimentally demonstrate the utility of two frameworks, global passivity and passivity deformation, for the detection of coupling to a hidden environment. We employ a trapped-ion quantum processor, where system qubits undergoing unitary evolution may optionally be coupled to an unobserved environment qubit, resulting in a heat leak. Evaluating the measurement data from the system qubits only, we show that global passivity can verify the presence of a heat leak, which is not detectable by a microscopic equivalent of the second law of thermodynamics. Furthermore, we experimentally show that passivity deformation allows for even more sensitive detection of heat leaks, as compared to global passivity, and detect a heat leak with an error margin of 5.3 standard deviations, in a scenario where other tests fail.

2.
Phys Rev Lett ; 127(20): 203001, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34860051

RESUMEN

A complete set of spectroscopic data is indispensable when using Rydberg states of trapped ions for quantum information processing. We carried out Rydberg series spectroscopy for nS_{1/2} states with 38≤n≤65 and for nD_{5/2} states with 37≤n≤50 on a single trapped ^{40}Ca^{+} ion. We determined the ionization energy of 2 870 575.582(15) GHz, 60 times more accurately as compared to the accepted value and contradicting it by 7.5 standard deviations. We confirm quantum defect values of δ_{S_{1/2}}=1.802 995(5) and δ_{D_{5/2}}=0.626 888(9) for nS_{1/2} and nD_{5/2} states, respectively, which allow for unambiguous addressing of Rydberg levels of Ca^{+} ions. Our measurements confirm Rydberg ion scaling properties, e.g., for blackbody induced ionization, linewidths and excitation strengths.

3.
Phys Rev Lett ; 124(4): 043402, 2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-32058736

RESUMEN

Coupling electronic and vibrational degrees of freedom of Rydberg atoms held in optical tweezer arrays offers a flexible mechanism for creating and controlling atom-atom interactions. We find that the state-dependent coupling between Rydberg atoms and local oscillator modes gives rise to two- and three-body interactions which are controllable through the strength of the local confinement. This approach even permits the cancellation of two-body terms such that three-body interactions become dominant. We analyze the structure of these interactions on two-dimensional bipartite lattice geometries and explore the impact of three-body interactions on system ground state on a square lattice. Focusing specifically on a system of ^{87}Rb atoms, we show that the effects of the multibody interactions can be maximized via a tailored dressed potential within a trapping frequency range of the order of a few hundred kilohertz and for temperatures corresponding to a >90% occupation of the atomic vibrational ground state. These parameters, as well as the multibody induced timescales, are compatible with state-of-the-art arrays of optical tweezers. Our work shows a highly versatile handle for engineering multibody interactions of quantum many-body systems in most recent manifestations on Rydberg lattice quantum simulators.

4.
Phys Rev Lett ; 123(15): 153603, 2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31702316

RESUMEN

We introduce a scheme to entangle Rydberg ions in a linear ion crystal, using the high electric polarizability of the Rydberg electronic states in combination with mutual Coulomb coupling of ions that establishes common modes of motion. After laser initialization of ions to a superposition of ground and Rydberg states, the entanglement operation is driven purely by applying a voltage pulse that shuttles the ion crystal back and forth. This operation can achieve entanglement on a sub-µs timescale, more than 2 orders of magnitude faster than typical gate operations driven by continuous-wave lasers. Our analysis shows that the fidelity achieved with this protocol can exceed 99.9% with experimentally achievable parameters.

5.
Phys Rev Lett ; 123(8): 080602, 2019 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-31491211

RESUMEN

We realize a heat engine using a single-electron spin as a working medium. The spin pertains to the valence electron of a trapped ^{40}Ca^{+} ion, and heat reservoirs are emulated by controlling the spin polarization via optical pumping. The engine is coupled to the ion's harmonic-oscillator degree of freedom via spin-dependent optical forces. The oscillator stores the work produced by the heat engine and, therefore, acts as a flywheel. We characterize the state of the flywheel by reconstructing the Husimi Q function of the oscillator after different engine run times. This allows us to infer both the deposited energy and the corresponding fluctuations throughout the onset of operation, starting in the oscillator ground state. In order to understand the energetics of the flywheel, we determine its ergotropy, i.e., the maximum amount of work which can be further extracted from it. Our results demonstrate how the intrinsic fluctuations of a microscopic heat engine fundamentally limit performance.

6.
Phys Rev Lett ; 119(15): 150503, 2017 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-29077443

RESUMEN

We demonstrate the deterministic generation of multipartite entanglement based on scalable methods. Four qubits are encoded in ^{40}Ca^{+}, stored in a microstructured segmented Paul trap. These qubits are sequentially entangled by laser-driven pairwise gate operations. Between these, the qubit register is dynamically reconfigured via ion shuttling operations, where ion crystals are separated and merged, and ions are moved in and out of a fixed laser interaction zone. A sequence consisting of three pairwise entangling gates yields a four-ion Greenberger-Horne-Zeilinger state |ψ⟩=(1/sqrt[2])(|0000⟩+|1111⟩), and full quantum state tomography reveals a state fidelity of 94.4(3)%. We analyze the decoherence of this state and employ dynamic decoupling on the spatially distributed constituents to maintain 69(5)% coherence at a storage time of 1.1 sec.

7.
Rev Sci Instrum ; 87(11): 113103, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27910317

RESUMEN

We report on the design of a cryogenic setup for trapped ion quantum computing containing a segmented surface electrode trap. The heat shield of our cryostat is designed to attenuate alternating magnetic field noise, resulting in 120 dB reduction of 50 Hz noise along the magnetic field axis. We combine this efficient magnetic shielding with high optical access required for single ion addressing as well as for efficient state detection by placing two lenses each with numerical aperture 0.23 inside the inner heat shield. The cryostat design incorporates vibration isolation to avoid decoherence of optical qubits due to the motion of the cryostat. We measure vibrations of the cryostat of less than ±20 nm over 2 s. In addition to the cryogenic apparatus, we describe the setup required for an operation with 40Ca+ and 88Sr+ ions. The instability of the laser manipulating the optical qubits in 40Ca+ is characterized by yielding a minimum of its Allan deviation of 2.4 ⋅ 10-15 at 0.33 s. To evaluate the performance of the apparatus, we trapped 40Ca+ ions, obtaining a heating rate of 2.14(16) phonons/s and a Gaussian decay of the Ramsey contrast with a 1/e-time of 18.2(8) ms.

8.
Phys Rev Lett ; 116(3): 033002, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26849591

RESUMEN

We demonstrate control of the absolute phase of an optical lattice with respect to a single trapped ion. The lattice is generated by off-resonant free-space laser beams, and we actively stabilize its phase by measuring its ac-Stark shift on a trapped ion. The ion is localized within the standing wave to better than 2% of its period. The locked lattice allows us to apply displacement operations via resonant optical forces with a controlled direction in phase space. Moreover, we observe the lattice-induced phase evolution of spin superposition states in order to analyze the relevant decoherence mechanisms. Finally, we employ lattice-induced phase shifts for inferring the variation of the ion position over the 157 µm range along the trap axis at accuracies of better than 6 nm.

9.
Phys Rev Lett ; 115(17): 173001, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26551109

RESUMEN

We demonstrate excitation of a single trapped cold (40)Ca(+) ion to Rydberg levels by laser radiation in the vacuum ultraviolet at a wavelength of 122 nm. Observed resonances are identified as 3d(2)D(3/2) to 51F, 52F and 3d(2)D(5/2) to 64F. We model the line shape and our results imply a large state-dependent coupling to the trapping potential. Rydberg ions are of great interest for future applications in quantum computing and simulation, in which large dipolar interactions are combined with the superb experimental control offered by Paul traps.

10.
Phys Rev Lett ; 115(14): 143003, 2015 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-26551810

RESUMEN

We demonstrate a method to determine dipole matrix elements by comparing measurements of dispersive and absorptive light ion interactions. We measure the matrix element pertaining to the Ca II H line, i.e., the 4(2)S(1/2)↔4(2)P(1/2) transition of (40)Ca(+), for which we find the value 2.8928(43) ea(0). Moreover, the method allows us to deduce the lifetime of the 4(2)P(1/2) state to be 6.904(26) ns, which is in agreement with predictions from recent theoretical calculations and resolves a long-standing discrepancy between calculated values and experimental results.

11.
Phys Rev Lett ; 114(7): 073001, 2015 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-25763956

RESUMEN

Ion Coulomb crystals are currently establishing themselves as a highly controllable test bed for mesoscopic systems of statistical mechanics. The detailed experimental interrogation of the dynamics of these crystals, however, remains an experimental challenge. In this work, we show how to extend the concepts of multidimensional nonlinear spectroscopy to the study of the dynamics of ion Coulomb crystals. The scheme we present can be realized with state-of-the-art technology and gives direct access to the dynamics, revealing nonlinear couplings even in the presence of thermal excitations. We illustrate the advantages of our proposal showing how two-dimensional spectroscopy can be used to detect signatures of a structural phase transition of the ion crystal, as well as resonant energy exchange between modes. Furthermore, we demonstrate in these examples how different decoherence mechanisms can be identified.

12.
Phys Rev Lett ; 112(3): 030602, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24484127

RESUMEN

We consider a quantum Otto cycle for a time-dependent harmonic oscillator coupled to a squeezed thermal reservoir. We show that the efficiency at maximum power increases with the degree of squeezing, surpassing the standard Carnot limit and approaching unity exponentially for large squeezing parameters. We further propose an experimental scheme to implement such a model system by using a single trapped ion in a linear Paul trap with special geometry. Our analytical investigations are supported by Monte Carlo simulations that demonstrate the feasibility of our proposal. For realistic trap parameters, an increase of the efficiency at maximum power of up to a factor of 4 is reached, largely exceeding the Carnot bound.

13.
Phys Rev Lett ; 111(8): 080501, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-24010420

RESUMEN

We propose and theoretically investigate a hybrid system composed of a crystal of trapped ions coupled to a cloud of ultracold fermions. The ions form a periodic lattice and induce a band structure in the atoms. This system combines the advantages of high fidelity operations and detection offered by trapped ion systems with ultracold atomic systems. It also features close analogies to natural solid-state systems, as the atomic degrees of freedom couple to phonons of the ion lattice, thereby emulating a solid-state system. Starting from the microscopic many-body Hamiltonian, we derive the low energy Hamiltonian, including the atomic band structure, and give an expression for the atom-phonon coupling. We discuss possible experimental implementations such as a Peierls-like transition into a period-doubled dimerized state.

14.
Nat Commun ; 4: 2290, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23921517

RESUMEN

Traversal of a symmetry-breaking phase transition at finite rates can lead to causally separated regions with incompatible symmetries and the formation of defects at their boundaries, which has a crucial role in quantum and statistical mechanics, cosmology and condensed matter physics. This mechanism is conjectured to follow universal scaling laws prescribed by the Kibble-Zurek mechanism. Here we determine the scaling law for defect formation in a crystal of 16 laser-cooled trapped ions, which are conducive to the precise control of structural phases and the detection of defects. The experiment reveals an exponential scaling of defect formation γ(ß), where γ is the rate of traversal of the critical point and ß=2.68±0.06. This supports the prediction of ß=8/3≈2.67 for finite inhomogeneous systems. Our result demonstrates that the scaling laws also apply in the mesoscopic regime and emphasizes the potential for further tests of non-equilibrium thermodynamics with ion crystals.

15.
Phys Rev Lett ; 110(13): 133602, 2013 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-23581319

RESUMEN

We perform a high-resolution real-time readout of the motion of a single trapped and laser-cooled Ba+ ion. By using an interferometric setup, we demonstrate a shot-noise-limited measurement of thermal oscillations with a resolution of 4 times the standard quantum limit. We apply the real-time monitoring for phase control of the ion motion through a feedback loop, suppressing the photon recoil-induced phase diffusion. Because of the spectral narrowing in the phase-locked mode, the coherent ion oscillation is measured with a resolution of about 0.3 times the standard quantum limit.

16.
Phys Rev Lett ; 109(20): 203006, 2012 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-23215485

RESUMEN

We propose an experimental scheme to realize a nanoheat engine with a single ion. An Otto cycle may be implemented by confining the ion in a linear Paul trap with tapered geometry and coupling it to engineered laser reservoirs. The quantum efficiency at maximum power is analytically determined in various regimes. Moreover, Monte Carlo simulations of the engine are performed that demonstrate its feasibility and its ability to operate at a maximum efficiency of 30% under realistic conditions.

17.
Phys Rev Lett ; 109(8): 080402, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-23002726

RESUMEN

We theoretically investigate the properties of a double-well bosonic Josephson junction coupled to a single trapped ion. We find that the coupling between the wells can be controlled by the internal state of the ion, which can be used for studying mesoscopic entanglement between the two systems and to measure their interaction with high precision. As a particular example we consider a single ^{87}Rb atom and a small Bose-Einstein condensate controlled by a single 171Yb+ ion. We calculate interwell coupling rates reaching hundreds of Hz, while the state dependence amounts to tens of Hz for plausible values of the currently unknown s-wave scattering length between the atom and the ion. The analysis shows that it is possible to induce either the self-trapping or the tunneling regime, depending on the internal state of the ion. This enables the generation of large scale ion-atomic wave packet entanglement within current technology.

18.
Phys Rev Lett ; 109(8): 080501, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-23002727

RESUMEN

We realize fast transport of ions in a segmented microstructured Paul trap. The ion is shuttled over a distance of more than 10(4) times its ground state wave function size during only five motional cycles of the trap (280 µm in 3.6 µs). Starting from a ground-state-cooled ion, we find an optimized transport such that the energy increase is as low as 0.10±0.01 motional quanta. In addition, we demonstrate that quantum information stored in a spin-motion entangled state is preserved throughout the transport. Shuttling operations are concatenated, as a proof-of-principle for the shuttling-based architecture to scalable ion trap quantum computing.

19.
Phys Rev Lett ; 109(26): 263003, 2012 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-23368557

RESUMEN

The accurate characterization of eigenmodes and eigenfrequencies of two-dimensional ion crystals provides the foundation for the use of such structures for quantum simulation purposes. We present a combined experimental and theoretical study of two-dimensional ion crystals. We demonstrate that standard pseudopotential theory accurately predicts the positions of the ions and the location of structural transitions between different crystal configurations. However, pseudopotential theory is insufficient to determine eigenfrequencies of the two-dimensional ion crystals accurately but shows significant deviations from the experimental data obtained from resolved sideband spectroscopy. Agreement at the level of 2.5×10(-3) is found with the full time-dependent Coulomb theory using the Floquet-Lyapunov approach and the effect is understood from the dynamics of two-dimensional ion crystals in the Paul trap. The results represent initial steps towards an exploitation of these structures for quantum simulation schemes.

20.
Phys Rev Lett ; 107(20): 207209, 2011 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-22181770

RESUMEN

We exploit the geometry of a zigzag cold-ion crystal in a linear trap to propose the quantum simulation of a paradigmatic model of long-ranged magnetic frustration. Such a quantum simulation would clarify the complex features of a rich phase diagram that presents ferromagnetic, dimerized-antiferromagnetic, paramagnetic, and floating phases, together with previously unnoticed features that are hard to assess by numerics. We analyze in detail its experimental feasibility, and provide supporting numerical evidence on the basis of realistic parameters in current ion-trap technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...