Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38562748

RESUMEN

The prototypic crAssphage (Carjivirus communis) is one of the most abundant, prevalent, and persistent gut bacteriophages, yet it remains uncultured and its lifestyle uncharacterized. For the last decade, crAssphage has escaped plaque-dependent culturing efforts, leading us to investigate alternative lifestyles that might explain its widespread success. Through genomic analyses and culturing, we find that crAssphage uses a phage-plasmid lifestyle to persist extrachromosomally. Plasmid-related genes are more highly expressed than those implicated in phage maintenance. Leveraging this finding, we use a plaque-free culturing approach to measure crAssphage replication in culture with Phocaeicola vulgatus, Phocaeicola dorei, and Bacteroides stercoris, revealing a broad host range. We demonstrate that crAssphage persists with its hosts in culture without causing major cell lysis events or integrating into host chromosomes. The ability to switch between phage and plasmid lifestyles within a wide range of hosts contributes to the prolific nature of crAssphage in the human gut microbiome.

2.
Appl Environ Microbiol ; 89(7): e0058323, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37404180

RESUMEN

Microbial source tracking (MST) identifies sources of fecal contamination in the environment using host-associated fecal markers. While there are numerous bacterial MST markers that can be used herein, there are few such viral markers. Here, we designed and tested novel viral MST markers based on tomato brown rugose fruit virus (ToBRFV) genomes. We assembled eight nearly complete genomes of ToBRFV from wastewater and stool samples from the San Francisco Bay Area in the United States. Next, we developed two novel probe-based reverse transcription-PCR (RT-PCR) assays based on conserved regions of the ToBRFV genome and tested the markers' sensitivities and specificities using human and non-human animal stool as well as wastewater. The ToBRFV markers are sensitive and specific; in human stool and wastewater, they are more prevalent and abundant than a commonly used viral marker, the pepper mild mottle virus (PMMoV) coat protein (CP) gene. We used the assays to detect fecal contamination in urban stormwater samples and found that the ToBRFV markers matched cross-assembly phage (crAssphage), an established viral MST marker, in prevalence across samples. Taken together, these results indicate that ToBRFV is a promising viral human-associated MST marker. IMPORTANCE Human exposure to fecal contamination in the environment can cause transmission of infectious diseases. Microbial source tracking (MST) can identify sources of fecal contamination so that contamination can be remediated and human exposures can be reduced. MST requires the use of host-associated MST markers. Here, we designed and tested novel MST markers from genomes of tomato brown rugose fruit virus (ToBRFV). The markers are sensitive and specific to human stool and highly abundant in human stool and wastewater samples.


Asunto(s)
Solanum lycopersicum , Aguas Residuales , Animales , Frutas , Biomarcadores , Heces/microbiología , Monitoreo del Ambiente/métodos
3.
PLoS Genet ; 19(5): e1010747, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37192196

RESUMEN

There are many mechanisms that give rise to genomic change: while point mutations are often emphasized in genomic analyses, evolution acts upon many other types of genetic changes that can result in less subtle perturbations. Changes in chromosome structure, DNA copy number, and novel transposon insertions all create large genomic changes, which can have correspondingly large impacts on phenotypes and fitness. In this study we investigate the spectrum of adaptive mutations that arise in a population under consistently fluctuating nitrogen conditions. We specifically contrast these adaptive alleles and the mutational mechanisms that create them, with mechanisms of adaptation under batch glucose limitation and constant selection in low, non-fluctuating nitrogen conditions to address if and how selection dynamics influence the molecular mechanisms of evolutionary adaptation. We observe that retrotransposon activity accounts for a substantial number of adaptive events, along with microhomology-mediated mechanisms of insertion, deletion, and gene conversion. In addition to loss of function alleles, which are often exploited in genetic screens, we identify putative gain of function alleles and alleles acting through as-of-yet unclear mechanisms. Taken together, our findings emphasize that how selection (fluctuating vs. non-fluctuating) is applied also shapes adaptation, just as the selective pressure (nitrogen vs. glucose) does itself. Fluctuating environments can activate different mutational mechanisms, shaping adaptive events accordingly. Experimental evolution, which allows a wider array of adaptive events to be assessed, is thus a complementary approach to both classical genetic screens and natural variation studies to characterize the genotype-to-phenotype-to-fitness map.


Asunto(s)
Retroelementos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Retroelementos/genética , Nitrógeno , Adaptación Fisiológica/genética , Mutación , Recombinación Genética , Glucosa , Selección Genética
4.
bioRxiv ; 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36712100

RESUMEN

Microbial source tracking (MST) identifies sources of fecal contamination in the environment using fecal host-associated markers. While there are numerous bacterial MST markers, there are few viral markers. Here we design and test novel viral MST markers based on tomato brown rugose fruit virus (ToBRFV) genomes. We assembled eight nearly complete genomes of ToBRFV from wastewater and stool samples from the San Francisco Bay Area in the United States of America. Next, we developed two novel probe-based RT-PCR assays based on conserved regions of the ToBRFV genome, and tested the markers’ sensitivities and specificities using human and non-human animal stool as well as wastewater. TheToBRFV markers are sensitive and specific; in human stool and wastewater, they are more prevalent and abundant than a currently used marker, the pepper mild mottle virus (PMMoV) coat protein (CP) gene. We applied the assays to detect fecal contamination in urban stormwater samples and found that the ToBRFV markers matched cross-assembly phage (crAssphage), an established viral MST marker, in prevalence across samples. Taken together, ToBRFV is a promising viral human-associated MST marker. Importance: Human exposure to fecal contamination in the environment can cause transmission of infectious diseases. Microbial source tracking (MST) can identify sources of fecal contamination so that contamination can be remediated and human exposures can be reduced. MST requires the use of fecal host-associated MST markers. Here we design and test novel MST markers from genomes of tomato brown rugose fruit virus (ToBRFV). The markers are sensitive and specific to human stool, and highly abundant in human stool and wastewater samples.

5.
Med ; 3(6): 371-387.e9, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35434682

RESUMEN

Background: COVID-19 manifests with respiratory, systemic, and gastrointestinal (GI) symptoms.1, SARS-CoV-2 RNA is detected in respiratory and fecal samples, and recent reports demonstrate viral replication in both the lung and intestinal tissue.2, 3, 4 Although much is known about early fecal RNA shedding, little is known about long-term shedding, especially in those with mild COVID-19. Furthermore, most reports of fecal RNA shedding do not correlate these findings with GI symptoms.5. Methods: We analyzed the dynamics of fecal RNA shedding up to 10 months after COVID-19 diagnosis in 113 individuals with mild to moderate disease. We also correlated shedding with disease symptoms. Findings: Fecal SARS-CoV-2 RNA is detected in 49.2% [95% confidence interval, 38.2%-60.3%] of participants within the first week after diagnosis. Whereas there was no ongoing oropharyngeal SARS-CoV-2 RNA shedding in subjects at 4 months, 12.7% [8.5%-18.4%] of participants continued to shed SARS-CoV-2 RNA in the feces at 4 months after diagnosis and 3.8% [2.0%-7.3%] shed at 7 months. Finally, we found that GI symptoms (abdominal pain, nausea, vomiting) are associated with fecal shedding of SARS-CoV-2 RNA. Conclusions: The extended presence of viral RNA in feces, but not in respiratory samples, along with the association of fecal viral RNA shedding with GI symptoms suggest that SARS-CoV-2 infects the GI tract and that this infection can be prolonged in a subset of individuals with COVID-19. Funding: This research was supported by a Stanford ChemH-IMA grant; fellowships from the AACR and NSF; and NIH R01-AI148623, R01-AI143757, and UL1TR003142.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Enfermedades Gastrointestinales , COVID-19/diagnóstico , Prueba de COVID-19 , Heces , Enfermedades Gastrointestinales/diagnóstico , Humanos , Pulmón , ARN Viral/genética , SARS-CoV-2/genética
6.
PLoS Biol ; 19(10): e3001428, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34644300

RESUMEN

To overcome CRISPR-Cas defense systems, many phages and mobile genetic elements (MGEs) encode CRISPR-Cas inhibitors called anti-CRISPRs (Acrs). Nearly all characterized Acrs directly bind Cas proteins to inactivate CRISPR immunity. Here, using functional metagenomic selection, we describe AcrIIA22, an unconventional Acr found in hypervariable genomic regions of clostridial bacteria and their prophages from human gut microbiomes. AcrIIA22 does not bind strongly to SpyCas9 but nonetheless potently inhibits its activity against plasmids. To gain insight into its mechanism, we obtained an X-ray crystal structure of AcrIIA22, which revealed homology to PC4-like nucleic acid-binding proteins. Based on mutational analyses and functional assays, we deduced that acrIIA22 encodes a DNA nickase that relieves torsional stress in supercoiled plasmids. This may render them less susceptible to SpyCas9, which uses free energy from negative supercoils to form stable R-loops. Modifying DNA topology may provide an additional route to CRISPR-Cas resistance in phages and MGEs.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , ADN/metabolismo , Proteínas Bacterianas/química , Mapeo Contig , ADN Superhelicoidal/metabolismo , Genoma Bacteriano , Metagenómica , Plásmidos , Profagos/genética , Multimerización de Proteína
7.
Nature ; 575(7781): 224-228, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31666699

RESUMEN

The human gastrointestinal tract consists of a dense and diverse microbial community, the composition of which is intimately linked to health. Extrinsic factors such as diet and host immunity are insufficient to explain the constituents of this community, and direct interactions between co-resident microorganisms have been implicated as important drivers of microbiome composition. The genomes of bacteria derived from the gut microbiome contain several pathways that mediate contact-dependent interbacterial antagonism1-3. Many members of the Gram-negative order Bacteroidales encode the type VI secretion system (T6SS), which facilitates the delivery of toxic effector proteins into adjacent cells4,5. Here we report the occurrence of acquired interbacterial defence (AID) gene clusters in Bacteroidales species that reside within the human gut microbiome. These clusters encode arrays of immunity genes that protect against T6SS-mediated intra- and inter-species bacterial antagonism. Moreover, the clusters reside on mobile elements, and we show that their transfer is sufficient to confer resistance to toxins in vitro and in gnotobiotic mice. Finally, we identify and validate the protective capability of a recombinase-associated AID subtype (rAID-1) that is present broadly in Bacteroidales genomes. These rAID-1 gene clusters have a structure suggestive of active gene acquisition and include predicted immunity factors of toxins derived from diverse organisms. Our data suggest that neutralization of contact-dependent interbacterial antagonism by AID systems helps to shape human gut microbiome ecology.


Asunto(s)
Bacteroidetes , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Interacciones Microbianas , Sistemas de Secreción Tipo VI/antagonistas & inhibidores , Animales , Bacteroidetes/genética , Bacteroidetes/inmunología , Femenino , Microbioma Gastrointestinal/inmunología , Tracto Gastrointestinal/inmunología , Genes Bacterianos/genética , Humanos , Ratones , Interacciones Microbianas/genética , Interacciones Microbianas/inmunología , Familia de Multigenes/genética , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/inmunología
8.
Elife ; 82019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31502535

RESUMEN

CRISPR-Cas systems protect bacteria and archaea from phages and other mobile genetic elements, which use small anti-CRISPR (Acr) proteins to overcome CRISPR-Cas immunity. Because Acrs are challenging to identify, their natural diversity and impact on microbial ecosystems are underappreciated. To overcome this discovery bottleneck, we developed a high-throughput functional selection to isolate ten DNA fragments from human oral and fecal metagenomes that inhibit Streptococcus pyogenes Cas9 (SpyCas9) in Escherichia coli. The most potent Acr from this set, AcrIIA11, was recovered from a Lachnospiraceae phage. We found that AcrIIA11 inhibits SpyCas9 in bacteria and in human cells. AcrIIA11 homologs are distributed across diverse bacteria; many distantly-related homologs inhibit both SpyCas9 and a divergent Cas9 from Treponema denticola. We find that AcrIIA11 antagonizes SpyCas9 using a different mechanism than other previously characterized Type II-A Acrs. Our study highlights the power of functional selection to uncover widespread Cas9 inhibitors within diverse microbiomes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteína 9 Asociada a CRISPR/antagonistas & inhibidores , Inhibidores Enzimáticos/metabolismo , Microbiota , Proteínas Virales/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Inhibidores Enzimáticos/aislamiento & purificación , Heces/microbiología , Heces/virología , Humanos , Metagenómica , Boca/microbiología , Boca/virología , Proteínas Virales/genética , Proteínas Virales/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...