Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nature ; 591(7851): 592-598, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33762764

RESUMEN

The surface mixed layer of the world ocean regulates global climate by controlling heat and carbon exchange between the atmosphere and the oceanic interior1-3. The mixed layer also shapes marine ecosystems by hosting most of the ocean's primary production4 and providing the conduit for oxygenation of deep oceanic layers. Despite these important climatic and life-supporting roles, possible changes in the mixed layer during an era of global climate change remain uncertain. Here we use oceanographic observations to show that from 1970 to 2018 the density contrast across the base of the mixed layer increased and that the mixed layer itself became deeper. Using a physically based definition of upper-ocean stability that follows different dynamical regimes across the global ocean, we find that the summertime density contrast increased by 8.9 ± 2.7 per cent per decade (10-6-10-5 per second squared per decade, depending on region), more than six times greater than previous estimates. Whereas prior work has suggested that a thinner mixed layer should accompany a more stratified upper ocean5-7, we find instead that the summertime mixed layer deepened by 2.9 ± 0.5 per cent per decade, or several metres per decade (typically 5-10 metres per decade, depending on region). A detailed mechanistic interpretation is challenging, but the concurrent stratification and deepening of the mixed layer are related to an increase in stability associated with surface warming and high-latitude surface freshening8,9, accompanied by a wind-driven intensification of upper-ocean turbulence10,11. Our findings are based on a complex dataset with incomplete coverage of a vast area. Although our results are robust within a wide range of sensitivity analyses, important uncertainties remain, such as those related to sparse coverage in the early years of the 1970-2018 period. Nonetheless, our work calls for reconsideration of the drivers of ongoing shifts in marine primary production, and reveals stark changes in the world's upper ocean over the past five decades.


Asunto(s)
Salinidad , Estaciones del Año , Agua de Mar/análisis , Agua de Mar/química , Temperatura , Animales , Organismos Acuáticos , Clima , Ecosistema , Océanos y Mares , Factores de Tiempo
3.
Philos Trans A Math Phys Eng Sci ; 375(2102)2017 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-28784715

RESUMEN

Observational estimates and numerical models both indicate a significant overall decline in marine oxygen levels over the past few decades. Spatial patterns of oxygen change, however, differ considerably between observed and modelled estimates. Particularly in the tropical thermocline that hosts open-ocean oxygen minimum zones, observations indicate a general oxygen decline, whereas most of the state-of-the-art models simulate increasing oxygen levels. Possible reasons for the apparent model-data discrepancies are examined. In order to attribute observed historical variations in oxygen levels, we here study mechanisms of changes in oxygen supply and consumption with sensitivity model simulations. Specifically, the role of equatorial jets, of lateral and diapycnal mixing processes, of changes in the wind-driven circulation and atmospheric nutrient supply, and of some poorly constrained biogeochemical processes are investigated. Predominantly wind-driven changes in the low-latitude oceanic ventilation are identified as a possible factor contributing to observed oxygen changes in the low-latitude thermocline during the past decades, while the potential role of biogeochemical processes remains difficult to constrain. We discuss implications for the attribution of observed oxygen changes to anthropogenic impacts and research priorities that may help to improve our mechanistic understanding of oxygen changes and the quality of projections into a changing future.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.


Asunto(s)
Modelos Estadísticos , Oxígeno , Agua de Mar/química , Cambio Climático , Ecosistema , Océanos y Mares , Oxígeno/análisis , Oxígeno/metabolismo , Temperatura
4.
Nature ; 542(7641): 335-339, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28202958

RESUMEN

Ocean models predict a decline in the dissolved oxygen inventory of the global ocean of one to seven per cent by the year 2100, caused by a combination of a warming-induced decline in oxygen solubility and reduced ventilation of the deep ocean. It is thought that such a decline in the oceanic oxygen content could affect ocean nutrient cycles and the marine habitat, with potentially detrimental consequences for fisheries and coastal economies. Regional observational data indicate a continuous decrease in oceanic dissolved oxygen concentrations in most regions of the global ocean, with an increase reported in a few limited areas, varying by study. Prior work attempting to resolve variations in dissolved oxygen concentrations at the global scale reported a global oxygen loss of 550 ± 130 teramoles (1012 mol) per decade between 100 and 1,000 metres depth based on a comparison of data from the 1970s and 1990s. Here we provide a quantitative assessment of the entire ocean oxygen inventory by analysing dissolved oxygen and supporting data for the complete oceanic water column over the past 50 years. We find that the global oceanic oxygen content of 227.4 ± 1.1 petamoles (1015 mol) has decreased by more than two per cent (4.8 ± 2.1 petamoles) since 1960, with large variations in oxygen loss in different ocean basins and at different depths. We suggest that changes in the upper water column are mostly due to a warming-induced decrease in solubility and biological consumption. Changes in the deeper ocean may have their origin in basin-scale multi-decadal variability, oceanic overturning slow-down and a potential increase in biological consumption.


Asunto(s)
Calentamiento Global , Oxígeno/análisis , Agua de Mar/química , Organismos Acuáticos/metabolismo , Ecosistema , Explotaciones Pesqueras , Historia del Siglo XX , Historia del Siglo XXI , Océanos y Mares , Oxígeno/química , Solubilidad , Temperatura , Factores de Tiempo
5.
Science ; 346(6214): 1227-31, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25477461

RESUMEN

Decadal trends in the properties of seawater adjacent to Antarctica are poorly known, and the mechanisms responsible for such changes are uncertain. Antarctic ice sheet mass loss is largely driven by ice shelf basal melt, which is influenced by ocean-ice interactions and has been correlated with Antarctic Continental Shelf Bottom Water (ASBW) temperature. We document the spatial distribution of long-term large-scale trends in temperature, salinity, and core depth over the Antarctic continental shelf and slope. Warming at the seabed in the Bellingshausen and Amundsen seas is linked to increased heat content and to a shoaling of the mid-depth temperature maximum over the continental slope, allowing warmer, saltier water greater access to the shelf in recent years. Regions of ASBW warming are those exhibiting increased ice shelf melt.


Asunto(s)
Congelación , Calentamiento Global , Cubierta de Hielo , Agua de Mar , Regiones Antárticas
6.
Philos Trans A Math Phys Eng Sci ; 372(2019): 20130047, 2014 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-24891389

RESUMEN

The Antarctic continental shelves and slopes occupy relatively small areas, but, nevertheless, are important for global climate, biogeochemical cycling and ecosystem functioning. Processes of water mass transformation through sea ice formation/melting and ocean-atmosphere interaction are key to the formation of deep and bottom waters as well as determining the heat flux beneath ice shelves. Climate models, however, struggle to capture these physical processes and are unable to reproduce water mass properties of the region. Dynamics at the continental slope are key for correctly modelling climate, yet their small spatial scale presents challenges both for ocean modelling and for observational studies. Cross-slope exchange processes are also vital for the flux of nutrients such as iron from the continental shelf into the mixed layer of the Southern Ocean. An iron-cycling model embedded in an eddy-permitting ocean model reveals the importance of sedimentary iron in fertilizing parts of the Southern Ocean. Ocean gliders play a key role in improving our ability to observe and understand these small-scale processes at the continental shelf break. The Gliders: Excellent New Tools for Observing the Ocean (GENTOO) project deployed three Seagliders for up to two months in early 2012 to sample the water to the east of the Antarctic Peninsula in unprecedented temporal and spatial detail. The glider data resolve small-scale exchange processes across the shelf-break front (the Antarctic Slope Front) and the front's biogeochemical signature. GENTOO demonstrated the capability of ocean gliders to play a key role in a future multi-disciplinary Southern Ocean observing system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...