Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Sep Sci ; 46(22): e2300520, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37775313

RESUMEN

The purity analysis of therapeutic peptides can often be challenging, demanding the application of more than a single analytical technique. Supercritical fluid chromatography nowadays is a promising alternative to reversed-phase liquid chromatography, providing orthogonal and complementary information. This study investigated its applicability for the separation of human insulin, its analogs and degradation products. A previously published method development protocol for peptides up to 2000 Da was successfully applied to the higher molecular weight insulins (6 kDa). A single gradient method was optimized for all insulins using a Torus DEA column (100 × 3.0 mm, 1.7 µm), carbon dioxide and a modifier consisting of methanol/acetonitrile/water/methanesulfonic acid (65:35:2:0.1, v/v/v/v). Consecutively, the crown ether 18-crown-6, which is well known to complex charged lysine sidechains and other amino functionalities, was added to the modifier to evaluate its impact on selectivity. A decreased retention and a shift in the elution order for the insulins were observed. An inverse effect on retention was found when combined with a neutral stationary phase chemistry (Viridis BEH).


Asunto(s)
Cromatografía con Fluido Supercrítico , Éteres Corona , Humanos , Insulina , Cromatografía con Fluido Supercrítico/métodos , Metanol/química , Dióxido de Carbono/química
2.
J Sep Sci ; 46(5): e2201007, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36601991

RESUMEN

Currently, little information has been published on the application of ternary eluent compositions in supercritical fluid chromatography for separating peptides. This work investigates the benefits of adding acetonitrile to methanol as the modifier. Three cyclic antibiotic peptides (bacitracin, colistin, and daptomycin) ranging between 1000 and 2000 Da were chosen as model substances. The ternary mixture of carbon dioxide, methanol, and acetonitrile is optimized to increase the resolution of the peptide's fingerprint. In addition, varying compositions of methanol and acetonitrile were found to change the elution order of the analytes, which is a valuable tool during method development. An individual gradient method using two Torus 2-PIC columns (each 100 × 3.0 mm, 1.7 µm), carbon dioxide, and a modifier consisting of acetonitrile/methanol/water/methanesulfonic acid (60:40:2:0.1, v:v:v:v) was optimized for each of the peptides. Subsequently, a generic method development protocol applicable to polypeptides is proposed.


Asunto(s)
Cromatografía con Fluido Supercrítico , Metanol , Metanol/química , Cromatografía con Fluido Supercrítico/métodos , Dióxido de Carbono/química , Péptidos , Agua/química
3.
Arch Pharm (Weinheim) ; 356(2): e2200484, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36461687

RESUMEN

Various drug samples (N = 249; drug substances, tablets, capsules, solutions, crèmes, and more) from the European pharmaceutical market were collected since 2019 and analyzed for 16 nitrosamines (NAs). In 2.0% of the cases, NAs were detected. These findings included four active pharmaceutical ingredients already known for potential NA contamination: losartan (N-nitrosodimethylamine [NDMA] and N-nitrosodiethylamine, simultaneously), valsartan (NDMA), metformin (NDMA) and ranitidine (NDMA). The fifth new finding, which has not been reported yet, discovered contamination of a molsidomine tablet sample with N-nitrosomorpholine (NMor). The tablet contained 144% of the toxicological allowable intake for NMor. NMor was included in our screening from the beginning and is currently the focus of regulatory authorities, but was added to the guidelines only last year. Thus, it may not have been the focus of regulatory investigations for too long. Our results indicate that the majority of drug products in the market are nonhazardous in terms of patient safety and drug purity. Unfortunately, the list of individual affected products keeps growing constantly and new NA cases, such as molsidomine or nitrosated drug substances (nitrosamine drug substance-related impurities [NDSRI]), continue to emerge. We therefore expect nitrosamine screenings to remain a high priority.


Asunto(s)
Molsidomina , Nitrosaminas , Humanos , Prevalencia , Relación Estructura-Actividad , Dimetilnitrosamina , Comprimidos
4.
J Sep Sci ; 45(16): 3095-3104, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35792556

RESUMEN

The application area of supercritical fluid chromatography expanded tremendously over the last years and more polar analytes such as biomolecules have become accessible. The growing interest in biopharmaceuticals and associated regulatory requirements demand alternative analytical tools. The orthogonal nature of supercritical fluid chromatography compared to reversed-phase liquid chromatography meets these needs and makes it a useful option during research and development. In this study, we present a systematic approach for the development of a supercritical fluid chromatography method for fingerprinting of tyrothricin, a complex therapeutic peptide covering a mass range from 1200 to 1900 Da. The substance was chosen due to the presence of cyclic and linear peptides and isomeric or highly similar amino acid sequences. Different column chemistries covering neutral, basic, and zwitterionic functionalities in combination with acidic, basic, and neutral additives were screened. Subsequently, Design-of-Experiments principles were utilized to perform optimization of the chromatographic parameters. The final mass spectrometry-compatible gradient method using a diol stationary phase, carbon dioxide, and a modifier consisting of methanol/water/methanesulfonic acid (100:2:0.1, v:v:v) was found to provide orthogonality and superior resolution to other methods published. Isomeric peptide compounds coeluting in reversed-phase liquid chromatography were resolved by applying the final method.


Asunto(s)
Cromatografía con Fluido Supercrítico , Dióxido de Carbono , Espectrometría de Masas , Metanol , Péptidos
5.
Arch Pharm (Weinheim) ; 355(4): e2100435, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35088435

RESUMEN

Since June 2018, thousands of drug products from around the world had to be recalled due to the unexpected presence of nitrosamines (NAs). Starting with the pharmaceutical group of sartans, antidiabetic drugs, antihistamines, and antibiotics also became the subject of investigation. The occurrence of NAs has shown that pharmaceutical companies and regulatory agencies did not focus on these substances in the past during drug development. In this study, we incorporated a nitrosation assay procedure into high-resolution supercritical fluid chromatography (SFC)-mass spectrometry screening to test the potential of direct nitrosation of active pharmaceutical ingredients (APIs). The forced degradation study was performed with a four-fold molar excess of sodium nitrite, relative to the drug substance, at pH 3-4 for 4 h at 37°C. Chromatographic separation was performed on a porous graphitic carbon column by SFC. The mass analysis then focused on direct N-nitrosation or N-nitroso compounds (NOCs) formed after dealkylation. Substances (n = 67) from various pharmaceutical classes were evaluated and 49.3% of them formed NOCs, of which 21.2% have not yet been reported in the literature. In addition, for two APIs, which are known to form an unidentified NOC, the structure could be identified. A few substances also showed multiple NOCs and even N,N'-dinitroso-species. As NAs are carcinogens, they have to be eliminated or at least limited to prevent cancer in patients, who rely on these drugs. This study contributes a procedure that can be implemented in preapproval drug development and postapproval risk assessment to prevent unexpected findings in the future.


Asunto(s)
Desarrollo de Medicamentos , Compuestos Nitrosos , Humanos , Compuestos Nitrosos/análisis , Compuestos Nitrosos/química , Compuestos Nitrosos/metabolismo , Medición de Riesgo , Relación Estructura-Actividad
6.
J Pharm Biomed Anal ; 197: 113960, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33626447

RESUMEN

Since the detection of nitrosamines (NA) in valsartan pharmaceuticals, over two years have passed. At present, the occurrence of NAs can be limited to a few drug substances and drug products, but it is already becoming apparent that the issue appears to be much bigger than initially thought. The impact on the global pharmaceutical market has been tremendous and the problem can be attributed mainly to uncritically adopted approval changes and the lack of suitable, modern analytical methods to detect those impurities in time. We hereby demonstrate how lifecycle management (LCM) can be used to develop and improve suitable and universal analytical methods within short time. The resulting SFC-MS/MS method is intended for a universal nitrosamine investigation in drug substances and drug products. Successful NA analysis was demonstrated for seven sartans, metformin, pioglitazone and ranitidine. Additionally, combination drug products, containing also amlodipine, hydrochlorothiazide, vildagliptin and sitagliptin, were analyzed successfully. The method achieved separation of 16 NAs in 4 min with a total run time of 11.5 min, utilizing a Supel Carbon porous graphitic carbon (PGC) column. Carbon dioxide together with 0.1% TFA in methanol as modifier were used as eluents and 0.35% formic acid in methanol as make-up solvent for mass spectrometric NA detection. By implementing LCM in this case study, development time was reduced and knowledge was implemented fast. At the same time, a high adaptability of this "vital" method was achieved, which makes it possible to implement the constantly changing regulatory requirements within the shortest possible time. Supplemental development data, according to the ICH guidelines Q8, Q12 and the proposed Q14 are disclosed, demonstrating the scientific Quality-by-Design (QbD) development approach, the "fitness for use" and the robustness of the analytical procedure. This method contributes to the still ongoing risk assessment process of the pharmaceutical industry and the regulatory agencies, in order to understand root causes of NA formation, maintain the drug supply and prevent drug shortage.


Asunto(s)
Cromatografía con Fluido Supercrítico , Nitrosaminas , Preparaciones Farmacéuticas , Composición de Medicamentos , Metanol , Espectrometría de Masas en Tándem
7.
J Pharm Biomed Anal ; 174: 151-160, 2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31174128

RESUMEN

Since July 2018, the pharmacological class of "sartans" has been the subject of considerable media and analytical interest, as it became known that they are contaminated with nitrosamines such as N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA) and N-nitrosodiisopropylamine (NDiPA). Previous compendial methods are not able to detect these new contaminants. Using the latest and innovative Quality-by-Design (QbD) approach, it has now been possible to develop an analytical method that enables to investigate sartans, such as valsartan and losartan. Also a large class of different nitrosamines in the ppb range and sartan-related impurities can thus be determined simultaneously in a single analysis using supercritical fluid chromatography (SFC). By using SFC, a broad spectrum of nonpolar and very polar impurities can be separated and analyzed in under 20 min. The analytical method developed is validated for limit testing according to ICH Q2(R1) and fulfills default thresholds of EMA and FDA for testing of drug substances and genotoxic impurities. Additionally, it can also be adapted to other pharmaceuticals that may be contaminated with nitrosamines, since tetrazole synthesis as the underlying cause of nitrosamine contamination is important for a set of other non-sartan drug substances.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/análisis , Contaminación de Medicamentos , Nitrosaminas/análisis , Cromatografía con Fluido Supercrítico , Dietilnitrosamina/análisis , Dimetilnitrosamina/análisis , Límite de Detección , Losartán/análisis , Propilaminas/análisis , Control de Calidad , Estándares de Referencia , Medición de Riesgo , Valsartán/análisis
8.
J Chromatogr A ; 1577: 38-46, 2018 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-30274690

RESUMEN

The use of trial-and-error principles is a frequently used technique in method development. This may lead to the fact that analytical methods are used routinely without developers and users having gained extensive and well-founded knowledge about the robustness of their analytical methods and the influence of critical key parameters. This very often leads to unnecessary problems for analysts. A simple way in reverse phase chromatography to simulate the effects of pH value changes on the separation and retention of substances is the pH-dependent calculation of the logD value. With this tool, model substances were used to show how the time requirement for method screening can be considerably reduced in silico and, in addition, extended knowledge about the separation mechanics can be generated. Based on this knowledge, a new method for the purity analysis of carbamazepine was developed within a very short period of time, which improves the performance of the official Ph.Eur. monograph by far. Furthermore, the extremely high robustness of the new method was demonstrated. Using the logD based approach, Quality-by-Design is applied in method development and kept pace with the increasing requirements of regulatory authorities in the pharmaceutical industry.


Asunto(s)
Química Farmacéutica/métodos , Cromatografía de Fase Inversa , Simulación por Computador , Concentración de Iones de Hidrógeno , Tiempo
9.
Artículo en Alemán | MEDLINE | ID: mdl-28058459

RESUMEN

The excessive sale of dietary supplements (DSs) has become a global multi-billion market as more and more people turn to DSs for a healthy lifestyle or for aesthetic reasons. DSs are also increasingly popular among athletes; 50-85% of recreational and 35-100% of competitive athletes report taking DSs, the latter more regularly. Unless pathological deficiencies are detected, the intake of DSs for recreational athletes is not recommended. While it may be advisable for competitive athletes to supplement their diet with certain macronutrients (proteins and carbohydrates), many micronutrients (vitamins, minerals) as well as allegedly performance enhancing DSs may only show minimal impact under specific conditions and for certain sports. However, most products lack proof of their effectiveness. In some cases, DSs may even have negative effects and reduce performance. Furthermore, competitive athletes should be aware of the fact that DSs may lead to positive doping tests, as they bear the risk of being contaminated with banned substances, or components may be banned substances themselves. Every single case of taking DSs should therefore be critically assessed and discussed with experts prior to use. DSs cannot replace a balanced diet and hard practice.


Asunto(s)
Rendimiento Atlético , Suplementos Dietéticos/efectos adversos , Doping en los Deportes/métodos , Sustancias para Mejorar el Rendimiento/efectos adversos , Sustancias para Mejorar el Rendimiento/uso terapéutico , Medicina Basada en la Evidencia , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA