Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale Adv ; 5(11): 2994-3004, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37260482

RESUMEN

Nanowires (NWs) offer unique opportunities for tuning the properties of III-V semiconductors by simultaneously controlling their nanoscale dimensions and switching their crystal phase between zinc-blende (ZB) and wurtzite (WZ). While much of this control has been enabled by direct, forward growth, the reverse reaction, i.e., crystal decomposition, provides very powerful means to further tailor properties towards the ultra-scaled dimensional level. Here, we use in situ transmission electron microscopy (TEM) to investigate the thermal decomposition kinetics of clean, ultrathin GaAs NWs and the role of distinctly different crystal polytypes in real-time and on the atomic scale. The whole process, from the NW growth to the decomposition, is conducted in situ without breaking vacuum to maintain pristine crystal surfaces. Radial decomposition occurs much faster for ZB- compared to WZ-phase NWs, due to the development of nano-faceted sidewall morphology and sublimation along the entire NW length. In contrast, WZ NWs form single-faceted, vertical sidewalls with decomposition proceeding only via step-flow mechanism from the NW tip. Concurrent axial decomposition is generally faster than the radial process, but is significantly faster (∼4-fold) in WZ phase, due to the absence of well-defined facets at the tip of WZ NWs. The results further show quantitatively the influence of the NW diameter on the sublimation and step-flow decomposition velocities elucidating several effects that can be exploited to fine-tune the NW dimensions.

2.
ACS Nano ; 16(12): 20281-20293, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36378999

RESUMEN

InGaAs quantum wells embedded in GaAs nanowires can serve as compact near-infrared emitters for direct integration onto Si complementary metal oxide semiconductor technology. While the core-shell geometry in principle allows for a greater tuning of composition and emission, especially farther into the infrared, the practical limits of elastic strain accommodation in quantum wells on multifaceted nanowires have not been established. One barrier to progress is the difficulty of directly comparing the emission characteristics and the precise microstructure of a single nanowire. Here we report an approach to correlating quantum well morphology, strain, defects, and emission to understand the limits of elastic strain accommodation in nanowire quantum wells specific to their geometry. We realize full 3D Bragg coherent diffraction imaging (BCDI) of intact quantum wells on vertically oriented epitaxial nanowires, which enables direct correlation with single-nanowire photoluminescence. By growing In0.2Ga0.8As quantum wells of distinct thicknesses on different facets of the same nanowire, we identified the critical thickness at which defects are nucleated. A correlation with a traditional transmission electron microscopy analysis confirms that BCDI can image the extended structure of defects. Finite element simulations of electron and hole states explain the emission characteristics arising from strained and partially relaxed regions. This approach, imaging the 3D strain and microstructure of intact nanowire core-shell structures with application-relevant dimensions, can aid the development of predictive models that enable the design of new compact infrared emitters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA