Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell Biol ; 34(4): 685-98, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24324008

RESUMEN

Cohesin is an essential multiprotein complex that mediates sister chromatid cohesion critical for proper segregation of chromosomes during cell division. Cohesin is also involved in DNA double-strand break (DSB) repair. In mammalian cells, cohesin is involved in both DSB repair and the damage checkpoint response, although the relationship between these two functions is unclear. Two cohesins differing by one subunit (SA1 or SA2) are present in somatic cells, but their functional specificities with regard to DNA repair remain enigmatic. We found that cohesin-SA2 is the main complex corecruited with the cohesin-loading factor NIPBL to DNA damage sites in an S/G(2)-phase-specific manner. Replacing the diverged C-terminal region of SA1 with the corresponding region of SA2 confers this activity on SA1. Depletion of SA2 but not SA1 decreased sister chromatid homologous recombination repair and affected repair pathway choice, indicating that DNA repair activity is specifically associated with cohesin recruited to damage sites. In contrast, both cohesin complexes function in the intra-S checkpoint, indicating that cell cycle-specific damage site accumulation is not a prerequisite for cohesin's intra-S checkpoint function. Our findings reveal the unique ways in which cohesin-SA1 and cohesin-SA2 participate in the DNA damage response, coordinately protecting genome integrity in human cells.


Asunto(s)
Proteínas de Ciclo Celular/genética , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Animales , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , División Celular/fisiología , Células Cultivadas , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Cohesinas
2.
J Biol Chem ; 286(20): 17870-8, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21454523

RESUMEN

The ß-globin locus undergoes dynamic chromatin interaction changes in differentiating erythroid cells that are thought to be important for proper globin gene expression. However, the underlying mechanisms are unclear. The CCCTC-binding factor, CTCF, binds to the insulator elements at the 5' and 3' boundaries of the locus, but these sites were shown to be dispensable for globin gene activation. We found that, upon induction of differentiation, cohesin and the cohesin loading factor Nipped-B-like (Nipbl) bind to the locus control region (LCR) at the CTCF insulator and distal enhancer regions as well as at the specific target globin gene that undergoes activation upon differentiation. Nipbl-dependent cohesin binding is critical for long-range chromatin interactions, both between the CTCF insulator elements and between the LCR distal enhancer and the target gene. We show that the latter interaction is important for globin gene expression in vivo and in vitro. Furthermore, the results indicate that such cohesin-mediated chromatin interactions associated with gene regulation are sensitive to the partial reduction of Nipbl caused by heterozygous mutation. This provides the first direct evidence that Nipbl haploinsufficiency affects cohesin-mediated chromatin interactions and gene expression. Our results reveal that dynamic Nipbl/cohesin binding is critical for developmental chromatin organization and the gene activation function of the LCR in mammalian cells.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Elementos de Facilitación Genéticos/fisiología , Regulación de la Expresión Génica/fisiología , Elementos Aisladores/fisiología , Globinas beta/biosíntesis , Animales , Factor de Unión a CCCTC , Proteínas de Ciclo Celular/genética , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Humanos , Células K562 , Ratones , Mutación , Proteínas/genética , Proteínas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Globinas beta/genética , Cohesinas
3.
PLoS Genet ; 5(7): e1000559, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19593370

RESUMEN

Facioscapulohumeral dystrophy (FSHD) is an autosomal dominant muscular dystrophy in which no mutation of pathogenic gene(s) has been identified. Instead, the disease is, in most cases, genetically linked to a contraction in the number of 3.3 kb D4Z4 repeats on chromosome 4q. How contraction of the 4qter D4Z4 repeats causes muscular dystrophy is not understood. In addition, a smaller group of FSHD cases are not associated with D4Z4 repeat contraction (termed "phenotypic" FSHD), and their etiology remains undefined. We carried out chromatin immunoprecipitation analysis using D4Z4-specific PCR primers to examine the D4Z4 chromatin structure in normal and patient cells as well as in small interfering RNA (siRNA)-treated cells. We found that SUV39H1-mediated H3K9 trimethylation at D4Z4 seen in normal cells is lost in FSHD. Furthermore, the loss of this histone modification occurs not only at the contracted 4q D4Z4 allele, but also at the genetically intact D4Z4 alleles on both chromosomes 4q and 10q, providing the first evidence that the genetic change (contraction) of one 4qD4Z4 allele spreads its effect to other genomic regions. Importantly, this epigenetic change was also observed in the phenotypic FSHD cases with no D4Z4 contraction, but not in other types of muscular dystrophies tested. We found that HP1gamma and cohesin are co-recruited to D4Z4 in an H3K9me3-dependent and cell type-specific manner, which is disrupted in FSHD. The results indicate that cohesin plays an active role in HP1 recruitment and is involved in cell type-specific D4Z4 chromatin regulation. Taken together, we identified the loss of both histone H3K9 trimethylation and HP1gamma/cohesin binding at D4Z4 to be a faithful marker for the FSHD phenotype. Based on these results, we propose a new model in which the epigenetic change initiated at 4q D4Z4 spreads its effect to other genomic regions, which compromises muscle-specific gene regulation leading to FSHD pathogenesis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Histonas/metabolismo , Distrofia Muscular Facioescapulohumeral/metabolismo , Animales , Cricetinae , Eucromatina/metabolismo , Células HeLa , Heterocromatina/metabolismo , Humanos , Metilación , Metiltransferasas/metabolismo , Ratones , Modelos Moleculares , Distrofia Muscular Facioescapulohumeral/genética , Reacción en Cadena de la Polimerasa , Proteínas Represoras/metabolismo , Secuencias Repetidas en Tándem , Células Tumorales Cultivadas , Cohesinas
4.
PLoS One ; 2(8): e783, 2007 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-17712430

RESUMEN

Chromosome shaping and individualization are necessary requisites to warrant the correct segregation of genomes in either mitotic or meiotic cell divisions. These processes are mainly prompted in vertebrates by three multiprotein complexes termed cohesin and condensin I and II. In the present study we have analyzed by immunostaining the appearance and subcellular distribution of condensin I in mouse mitotic and meiotic chromosomes. Our results demonstrate that in either mitotically or meiotically dividing cells, condensin I is loaded onto chromosomes by prometaphase. Condensin I is detectable as a fuzzy axial structure running inside chromatids of condensed chromosomes. The distribution of condensin I along the chromosome length is not uniform, since it preferentially accumulates close to the chromosome ends. Interestingly, these round accumulations found at the condensin I axes termini colocalized with telomere complexes. Additionally, we present the relative distribution of the condensin I and cohesin complexes in metaphase I bivalents. All these new data have allowed us to propose a comprehensive model for meiotic chromosome structure.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Estructuras Cromosómicas , Cromosomas de los Mamíferos/metabolismo , Proteínas de Unión al ADN/metabolismo , Meiosis/fisiología , Complejos Multiproteicos/metabolismo , Adenosina Trifosfatasas/genética , Animales , Cromosomas de los Mamíferos/química , Cromosomas de los Mamíferos/ultraestructura , Proteínas de Unión al ADN/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitosis/fisiología , Complejos Multiproteicos/genética , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Espermatogonias/citología , Espermatogonias/fisiología , Telómero/metabolismo
5.
Mol Cell ; 21(6): 837-48, 2006 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-16543152

RESUMEN

Condensins are essential protein complexes critical for mitotic chromosome organization. Little is known about the function of condensins during interphase, particularly in mammalian cells. Here we report the interphase-specific interaction between condensin I and the DNA nick-sensor poly(ADP-ribose) polymerase 1 (PARP-1). We show that the association between condensin I, PARP-1, and the base excision repair (BER) factor XRCC1 increases dramatically upon single-strand break damage (SSB) induction. Damage-specific association of condensin I with the BER factors flap endonuclease 1 (FEN-1) and DNA polymerase delta/epsilon was also observed, suggesting that condensin I is recruited to interact with BER factors at damage sites. Consistent with this, DNA damage rapidly stimulates the chromatin association of PARP-1, condensin I, and XRCC1. Furthermore, depletion of condensin in vivo compromises SSB but not double-strand break (DSB) repair. Our results identify a SSB-specific response of condensin I through PARP-1 and demonstrate a role for condensin in SSB repair.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Complejos Multiproteicos/fisiología , Poli(ADP-Ribosa) Polimerasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas Portadoras , Proteínas de Ciclo Celular , Línea Celular , Pollos/genética , Cromatina , Proteínas Cromosómicas no Histona , ADN de Cadena Simple , Células HeLa , Humanos , Interfase , Espectrometría de Masas , Ratones/genética , Ratones Noqueados , Modelos Biológicos , Complejos Multiproteicos/metabolismo , Proteínas Nucleares , Poli(ADP-Ribosa) Polimerasas/metabolismo , Poli(ADP-Ribosa) Polimerasas/fisiología , Transfección , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X , Proteínas de Xenopus
6.
Nucleic Acids Res ; 32(9): 2716-29, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15148359

RESUMEN

Proper patterns of genome-wide DNA methylation, mediated by DNA methyltransferases DNMT1, -3A and -3B, are essential for embryonic development and genomic stability in mammalian cells. The de novo DNA methyltransferase DNMT3B is of particular interest because it is frequently overexpressed in tumor cells and is mutated in immunodeficiency, centromere instability and facial anomalies (ICF) syndrome. In order to gain a better understanding of DNMT3B, in terms of the targeting of its methylation activity and its role in genome stability, we biochemically purified endogenous DNMT3B from HeLa cells. DNMT3B co-purifies and interacts, both in vivo and in vitro, with several components of the condensin complex (hCAP-C, hCAP-E and hCAP-G) and KIF4A. Condensin mediates genome-wide chromosome condensation at the onset of mitosis and is critical for proper segregation of sister chromatids. KIF4A is proposed to be a motor protein carrying DNA as cargo. DNMT3B also interacts with histone deacetylase 1 (HDAC1), the co-repressor SIN3A and the ATP-dependent chromatin remodeling enzyme hSNF2H. Further more, DNMT3B co-localizes with condensin and KIF4A on condensed chromosomes throughout mitosis. These studies therefore reveal the first direct link between the machineries regulating DNA methylation and mitotic chromosome condensation in mammalian cells.


Asunto(s)
Cromosomas/química , Cromosomas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , ADN/genética , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasas/aislamiento & purificación , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Técnica del Anticuerpo Fluorescente , Células HeLa , Humanos , Interfase , Cinesinas/metabolismo , Sustancias Macromoleculares , Mitosis , Complejos Multiproteicos , Pruebas de Precipitina , Unión Proteica , Transporte de Proteínas , Secuencias Repetitivas de Ácidos Nucleicos , Xenopus , ADN Metiltransferasa 3B
7.
Chromosome Res ; 10(7): 549-60, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12498344

RESUMEN

SMC proteins are components of cohesin complexes that function in chromosome cohesion. We determined that SMC1alpha and SMC3 localized to wild-type mouse meiotic chromosomes, but with distinct differences in their patterns. Anti-SMC3 coincided with axial elements of the synaptonemal complex, while SMC1alpha was observed mainly in regions where homologues were synapsed. This pattern was especially visible in pachytene sex vesicles where SMC1alpha localized only weakly to the asynapsed regions. At diplotene, SMC3, but not SMC1alpha, remained bound along axial elements of desynapsed chromosomes. SMC1alpha and SMC3 were also found to localize along meiotic chromosome cores of Spo11 null spermatocytes, in which double-strand break formation required for DNA recombination and homologous pairing were disrupted. In Spo11 -/- cells, SMC1alpha localization differed from SMC3 again, confirming that SMC1alpha is mainly associated with homologous or non-homologous synapsed regions, whereas SMC3 localized throughout the chromosomes. Our results suggest that the two cohesin proteins may not always be associated in a dimer and may function as separate complexes in mammalian meiosis, with SMC1alpha playing a more specific role in synapsis. In addition, our results indicate that cohesin cores can form independently of double-strand break formation and homologous pairing.


Asunto(s)
Animales Salvajes , Proteínas de Ciclo Celular/genética , Proteoglicanos Tipo Condroitín Sulfato , Proteínas Cromosómicas no Histona/genética , Esterasas/genética , Meiosis/genética , Células 3T3 , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/metabolismo , Endodesoxirribonucleasas , Esterasas/deficiencia , Esterasas/fisiología , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Espermatocitos/química , Espermatocitos/metabolismo , Complejo Sinaptonémico/fisiología , Testículo/metabolismo
8.
Nature ; 418(6901): 994-8, 2002 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-12198550

RESUMEN

Nucleosomal DNA is arranged in a higher-order structure that presents a barrier to most cellular processes involving protein DNA interactions. The cellular machinery involved in sister chromatid cohesion, the cohesin complex, also requires access to the nucleosomal DNA to perform its function in chromosome segregation. The machineries that provide this accessibility are termed chromatin remodelling factors. Here, we report the isolation of a human ISWI (SNF2h)-containing chromatin remodelling complex that encompasses components of the cohesin and NuRD complexes. We show that the hRAD21 subunit of the cohesin complex directly interacts with the ATPase subunit SNF2h. Mapping of hRAD21, SNF2h and Mi2 binding sites by chromatin immunoprecipitation experiments reveals the specific association of these three proteins with human DNA elements containing Alu sequences. We find a correlation between modification of histone tails and association of the SNF2h/cohesin complex with chromatin. Moreover, we show that the association of the cohesin complex with chromatin can be regulated by the state of DNA methylation. Finally, we present evidence pointing to a role for the ATPase activity of SNF2h in the loading of hRAD21 on chromatin.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/química , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Humanos/química , Cromosomas Humanos/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Elementos Alu/genética , Cromatina/genética , Cromosomas Humanos/genética , ADN/química , ADN/genética , ADN/metabolismo , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas , Células HeLa , Humanos , Sustancias Macromoleculares , Pruebas de Precipitina , Unión Proteica , Subunidades de Proteína , Retroelementos/genética , Cohesinas
9.
Mol Cell Biol ; 22(16): 5769-81, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12138188

RESUMEN

CNAP1 (hCAP-D2/Eg7) is an essential component of the human condensin complex required for mitotic chromosome condensation. This conserved complex contains a structural maintenance of chromosomes (SMC) family protein heterodimer and three non-SMC subunits. The mechanism underlying condensin targeting to mitotic chromosomes and the role played by the individual condensin components, particularly the non-SMC subunits, are not well understood. We report here characterization of the non-SMC condensin component CNAP1. CNAP1 contains two separate domains required for its stable incorporation into the complex. We found that the carboxyl terminus of CNAP1 possesses a mitotic chromosome-targeting domain that does not require the other condensin components. The same region also contains a functional bipartite nuclear localization signal. A mutant CNAP1 missing this domain, although still incorporated into condensin, was unable to associate with mitotic chromosomes. Successful chromosome targeting of deletion mutants correlated with their ability to directly bind to histones H1 and H3 in vitro. The H3 interaction appears to be mediated through the H3 histone tail, and a subfragment containing the targeting domain was found to interact with histone H3 in vivo. Thus, the CNAP1 C-terminal region defines a novel histone-binding domain that is responsible for targeting CNAP1, and possibly condensin, to mitotic chromosomes.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cromosomas Humanos/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Adenosina Trifosfatasas/química , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular , Línea Celular , Proteínas Cromosómicas no Histona , Cromosomas Humanos/genética , Proteínas de Unión al ADN/química , Proteínas Fluorescentes Verdes , Histonas/metabolismo , Humanos , Indicadores y Reactivos/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Sustancias Macromoleculares , Datos de Secuencia Molecular , Complejos Multiproteicos , Proteínas Nucleares/genética , Proteínas de Unión a Poli-ADP-Ribosa , Estructura Terciaria de Proteína , Subunidades de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...