Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 23(1): 608, 2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-35987630

RESUMEN

BACKGROUND: Functional genomics uses unbiased systematic genome-wide gene disruption or analyzes natural variations such as gene expression profiles of different tissues from multicellular organisms to link gene functions to particular phenotypes. Functional genomics approaches are of particular importance to identify large sets of genes that are specifically important for a particular biological process beyond known candidate genes, or when the process has not been studied with genetic methods before. RESULTS: Here, we present a large set of genes whose disruption interferes with the function of the odoriferous defensive stink glands of the red flour beetle Tribolium castaneum. This gene set is the result of a large-scale systematic phenotypic screen using RNA interference applied in a genome-wide forward genetics manner. In this first-pass screen, 130 genes were identified, of which 69 genes could be confirmed to cause phenotypic changes in the glands upon knock-down, which vary from necrotic tissue and irregular reservoir size to irregular color or separation of the secreted gland compounds. Gene ontology analysis revealed that many of those genes are encoding enzymes (peptidases and cytochromes P450) as well as proteins involved in membrane trafficking with an enrichment in lysosome and mineral absorption pathways. The knock-down of 13 genes caused specifically a strong reduction of para-benzoquinones in the gland reservoirs, suggesting a specific function in the synthesis of these toxic compounds. Only 14 of the 69 confirmed gland genes are differentially overexpressed in stink gland tissue and thus could have been detected in a transcriptome-based analysis. However, only one out of eight genes identified by a transcriptomics approach known to cause phenotypic changes of the glands upon knock-down was recognized by this phenotypic screen, indicating the limitation of such a non-redundant first-pass screen. CONCLUSION: Our results indicate the importance of combining diverse and independent methodologies to identify genes necessary for the function of a certain biological tissue, as the different approaches do not deliver redundant results but rather complement each other. The presented phenotypic screen together with a transcriptomics approach are now providing a set of close to hundred genes important for odoriferous defensive stink gland physiology in beetles.


Asunto(s)
Escarabajos , Tribolium , Animales , Escarabajos/genética , Genómica , Fenotipo , Transcriptoma , Tribolium/genética
2.
G3 (Bethesda) ; 9(4): 1009-1026, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30733381

RESUMEN

Although muscle development has been widely studied in Drosophila melanogaster there are still many gaps in our knowledge, and it is not known to which extent this knowledge can be transferred to other insects. To help in closing these gaps we participated in a large-scale RNAi screen that used the red flour beetle, Tribolium castaneum, as a screening platform. The effects of systemic RNAi were screened upon double-stranded RNA injections into appropriate muscle-EGFP tester strains. Injections into pupae were followed by the analysis of the late embryonic/early larval muscle patterns, and injections into larvae by the analysis of the adult thoracic muscle patterns. Herein we describe the results of the first-pass screens with pupal and larval injections, which covered ∼8,500 and ∼5,000 genes, respectively, of a total of ∼16,500 genes of the Tribolium genome. Apart from many genes known from Drosophila as regulators of muscle development, a collection of genes previously unconnected to muscle development yielded phenotypes in larval body wall and leg muscles as well as in indirect flight muscles. We then present the main candidates from the pupal injection screen that remained after being processed through a series of verification and selection steps. Further, we discuss why distinct though overlapping sets of genes are revealed by the Drosophila and Tribolium screening approaches.


Asunto(s)
Genes de Insecto , Desarrollo de Músculos/genética , Tribolium/genética , Animales , Clonación Molecular , Genoma de los Insectos , Interferencia de ARN , Tribolium/crecimiento & desarrollo
3.
Proc Biol Sci ; 285(1885)2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-30135167

RESUMEN

The mechanisms underlying the evolution of morphological novelties have remained enigmatic but co-option of existing gene regulatory networks (GRNs), recruitment of genes and the evolution of orphan genes have all been suggested to contribute. Here, we study a morphological novelty of beetle pupae called gin-trap. By combining the classical candidate gene approach with unbiased screening in the beetle Tribolium castaneum, we find that 70% of the tested components of the wing network were required for gin-trap development. However, many downstream and even upstream components were not included in the co-opted network. Only one gene was recruited from another biological context, but it was essential for the anteroposterior symmetry of the gin-traps, which represents a gin-trap-unique morphological innovation. Our data highlight the importance of co-option and modification of GRNs. The recruitment of single genes may not be frequent in the evolution of morphological novelties, but may be essential for subsequent diversification of the novelties. Finally, after having screened about 28% of annotated genes in the Tribolium genome to identify the genes required for gin-trap development, we found none of them are orphan genes, suggesting that orphan genes may have played only a minor, if any, role in the evolution of gin-traps.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Genes de Insecto , Tribolium/crecimiento & desarrollo , Tribolium/genética , Animales , Pupa/genética , Pupa/crecimiento & desarrollo
4.
BMC Genomics ; 16: 674, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26334912

RESUMEN

BACKGROUND: Insect pest control is challenged by insecticide resistance and negative impact on ecology and health. One promising pest specific alternative is the generation of transgenic plants, which express double stranded RNAs targeting essential genes of a pest species. Upon feeding, the dsRNA induces gene silencing in the pest resulting in its death. However, the identification of efficient RNAi target genes remains a major challenge as genomic tools and breeding capacity is limited in most pest insects impeding whole-animal-high-throughput-screening. RESULTS: We use the red flour beetle Tribolium castaneum as a screening platform in order to identify the most efficient RNAi target genes. From about 5,000 randomly screened genes of the iBeetle RNAi screen we identify 11 novel and highly efficient RNAi targets. Our data allowed us to determine GO term combinations that are predictive for efficient RNAi target genes with proteasomal genes being most predictive. Finally, we show that RNAi target genes do not appear to act synergistically and that protein sequence conservation does not correlate with the number of potential off target sites. CONCLUSIONS: Our results will aid the identification of RNAi target genes in many pest species by providing a manageable number of excellent candidate genes to be tested and the proteasome as prime target. Further, the identified GO term combinations will help to identify efficient target genes from organ specific transcriptomes. Our off target analysis is relevant for the sequence selection used in transgenic plants.


Asunto(s)
Genes de Insecto , Control Biológico de Vectores , Complejo de la Endopetidasa Proteasomal/metabolismo , Interferencia de ARN , Tribolium/genética , Animales , Secuencia de Bases , Análisis por Conglomerados , Secuencia Conservada , Ontología de Genes
5.
Nat Commun ; 6: 7822, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26215380

RESUMEN

Genetic screens are powerful tools to identify the genes required for a given biological process. However, for technical reasons, comprehensive screens have been restricted to very few model organisms. Therefore, although deep sequencing is revealing the genes of ever more insect species, the functional studies predominantly focus on candidate genes previously identified in Drosophila, which is biasing research towards conserved gene functions. RNAi screens in other organisms promise to reduce this bias. Here we present the results of the iBeetle screen, a large-scale, unbiased RNAi screen in the red flour beetle, Tribolium castaneum, which identifies gene functions in embryonic and postembryonic development, physiology and cell biology. The utility of Tribolium as a screening platform is demonstrated by the identification of genes involved in insect epithelial adhesion. This work transcends the restrictions of the candidate gene approach and opens fields of research not accessible in Drosophila.


Asunto(s)
Desarrollo Embrionario/genética , Proteínas de Insectos/genética , Metamorfosis Biológica/genética , Oogénesis/genética , Interferencia de ARN , Tribolium/genética , Animales , Escarabajos/embriología , Escarabajos/genética , Escarabajos/fisiología , Secuenciación de Nucleótidos de Alto Rendimiento , Larva/genética , Pupa/genética , Tribolium/embriología , Tribolium/fisiología
6.
Nucleic Acids Res ; 43(Database issue): D720-5, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25378303

RESUMEN

The iBeetle-Base (http://ibeetle-base.uni-goettingen.de) makes available annotations of RNAi phenotypes, which were gathered in a large scale RNAi screen in the red flour beetle Tribolium castaneum (iBeetle screen). In addition, it provides access to sequence information and links for all Tribolium castaneum genes. The iBeetle-Base contains the annotations of phenotypes of several thousands of genes knocked down during embryonic and metamorphic epidermis and muscle development in addition to phenotypes linked to oogenesis and stink gland biology. The phenotypes are described according to the EQM (entity, quality, modifier) system using controlled vocabularies and the Tribolium morphological ontology (TrOn). Furthermore, images linked to the respective annotations are provided. The data are searchable either for specific phenotypes using a complex 'search for morphological defects' or a 'quick search' for gene names and IDs. The red flour beetle Tribolium castaneum has become an important model system for insect functional genetics and is a representative of the most species rich taxon, the Coleoptera, which comprise several devastating pests. It is used for studying insect typical development, the evolution of development and for research on metabolism and pest control. Besides Drosophila, Tribolium is the first insect model organism where large scale unbiased screens have been performed.


Asunto(s)
Bases de Datos Genéticas , Genes de Insecto , Interferencia de ARN , Tribolium/genética , Animales , Femenino , Internet , Fenotipo , Tribolium/anatomía & histología , Tribolium/embriología , Interfaz Usuario-Computador
7.
PLoS One ; 8(7): e70695, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23936240

RESUMEN

In a morphological ontology the expert's knowledge is represented in terms, which describe morphological structures and how these structures relate to each other. With the assistance of ontologies this expert knowledge is made processable by machines, through a formal and standardized representation of terms and their relations to each other. The red flour beetle Tribolium castaneum, a representative of the most species rich animal taxon on earth (the Coleoptera), is an emerging model organism for development, evolution, physiology, and pest control. In order to foster Tribolium research, we have initiated the Tribolium Ontology (TrOn), which describes the morphology of the red flour beetle. The content of this ontology comprises so far most external morphological structures as well as some internal ones. All modeled structures are consistently annotated for the developmental stages larva, pupa and adult. In TrOn all terms are grouped into three categories: Generic terms represent morphological structures, which are independent of a developmental stage. In contrast, downstream of such terms are concrete terms which stand for a dissectible structure of a beetle at a specific life stage. Finally, there are mixed terms describing structures that are only found at one developmental stage. These terms combine the characteristics of generic and concrete terms with features of both. These annotation principles take into account the changing morphology of the beetle during development and provide generic terms to be used in applications or for cross linking with other ontologies and data resources. We use the ontology for implementing an intuitive search function at the electronic iBeetle-Base, which stores morphological defects found in a genome wide RNA interference (RNAi) screen. The ontology is available for download at http://ibeetle-base.uni-goettingen.de.


Asunto(s)
Motor de Búsqueda/métodos , Tribolium/clasificación , Animales , Internet , Tribolium/anatomía & histología , Tribolium/genética
8.
BMC Genomics ; 14: 5, 2013 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-23324472

RESUMEN

BACKGROUND: RNA interference (RNAi) is a powerful tool to study gene function in organisms that are not amenable to classical forward genetics. Hence, together with the ease of comprehensively identifying genes by new generation sequencing, RNAi is expanding the scope of animal species and questions that can be addressed in terms of gene function. In the case of genetic mutants, the genetic background of the strains used is known to influence the phenotype while this has not been described for RNAi experiments. RESULTS: Here we show in the red flour beetle Tribolium castaneum that RNAi against Tc-importin α1 leads to different phenotypes depending on the injected strain. We rule out off target effects and show that sequence divergence does not account for this difference. By quantitatively comparing phenotypes elicited by RNAi knockdown of four different genes we show that there is no general difference in RNAi sensitivity between these strains. Finally, we show that in case of Tc-importin α1 the difference depends on the maternal genotype. CONCLUSIONS: These results show that in RNAi experiments strain specific differences have to be considered and that a proper documentation of the injected strain is required. This is especially important for the increasing number of emerging model organisms that are being functionally investigated using RNAi. In addition, our work shows that RNAi is suitable to systematically identify the differences in the gene regulatory networks present in populations of the same species, which will allow novel insights into the evolution of animal diversity.


Asunto(s)
Fenotipo , Interferencia de ARN , Tribolium/genética , Secuencia de Aminoácidos , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Inyecciones , Proteínas de Insectos/química , Proteínas de Insectos/deficiencia , Proteínas de Insectos/genética , Masculino , Datos de Secuencia Molecular , Madres , Especificidad de la Especie , Tribolium/anatomía & histología , Tribolium/embriología , alfa Carioferinas/química , alfa Carioferinas/deficiencia , alfa Carioferinas/genética
9.
Dev Biol ; 364(2): 224-35, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22326441

RESUMEN

Abdominal patterning in Drosophila requires the function of Nanos (nos) and Pumilio (pum) to repress posterior translation of hunchback mRNA. Here we provide the first functional analysis of nanos and pumilio genes during blastodermal patterning of a short-germ insect. We found that nos and pum in the red flour beetle Tribolium castaneum crucially contribute to posterior segmentation by preventing hunchback translation. While this function seems to be conserved among insects, we provide evidence that Nos and Pum may also act on giant expression, another gap gene. After depletion of nos and pum by parental RNAi, Hunchback and giant remain ectopically at the posterior blastoderm and the posterior Krüppel (Kr) domain is not being activated. giant may be a direct target of Nanos and Pumilio in Tribolium and presumably prevents early Kr expression. In the absence of Kr, the majority of secondary gap gene domains fail to be activated, and abdominal segmentation is terminated prematurely. Surprisingly, we found Nos and Pum also to be involved in early head patterning, as the loss of Nos and Pum results in deletions and transformations of gnathal and pre-gnathal anlagen. Since the targets of Nos and Pum in head development remain to be identified, we propose that anterior patterning in Tribolium may involve additional maternal factors.


Asunto(s)
Tipificación del Cuerpo , Proteínas de Unión al ARN/genética , Tribolium/embriología , Animales , Blastodermo/embriología , Blastodermo/crecimiento & desarrollo , Blastodermo/metabolismo , Desarrollo Embrionario/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Cabeza/embriología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Masculino , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Curr Biol ; 19(21): 1811-5, 2009 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-19818622

RESUMEN

Posterior expression of Caudal is required for early embryonic development in nematodes, arthropods, and vertebrates. In Drosophila, ectopic Caudal in anterior cells can induce head defects, and in Caenorhabditis the absence of Caudal in anterior embryonic cells is required for proper development. Anterior Caudal repression in these species is achieved through unrelated translational repressors, the homeodomain protein Bicoid and the KH domain factor Mex-3, respectively. Here we report that the Mex-3 ortholog in the flour beetle Tribolium plays a crucial role in head formation and that Caudal in this species is repressed by the combined activities of Mex-3 and Zen-2, a protein sharing common ancestry with the dipteran morphogen Bicoid. We propose that Mex-3 represents an ancient "anterior" promoting factor common to all Ecdysozoa (and maybe all Bilateria), whose role has been usurped in higher dipterans by Bicoid.


Asunto(s)
Tipificación del Cuerpo , Regulación del Desarrollo de la Expresión Génica , Cabeza/embriología , Proteínas de Homeodominio/fisiología , Proteínas de Insectos/fisiología , Tribolium/embriología , Animales , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Tribolium/genética , Tribolium/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA