Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Metabolites ; 14(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38668341

RESUMEN

Global plant production is challenged by unpredictable (a)biotic stresses that occur individually, simultaneously or staggered. Due to an increasing demand for environmentally friendly plant production, new sustainable, universal, and preventive measures in crop protection are needed. We postulate thermopriming as a suitable procedure that fulfills these requirements. Therefore, we performed thermopriming as a pre-conditioning on tomato transplants in combination with two subsequent salt stress treatments to evaluate their single and combined physiological effects on leaves and fruits with regard to plant performance, fruit yield and quality. We identified a cross-tolerance to salinity that was triggered by the preceding thermopriming treatment and resulted in an accumulation of phenols and flavonols in the leaves. Plant growth and fruit yield were initially delayed after the stress treatments but recovered later. In regard to fruit quality, we found an increase in carotenoid and starch contents in fruits due to thermopriming, while sugars and titratable acidity were not affected. Our results indicate that thermopriming can mitigate the impact of subsequent and recurrent stress events on plant performance and yield under production-like conditions.

2.
Plant Physiol Biochem ; 155: 888-897, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32905983

RESUMEN

In tomato production, the accruing green biomass shows promising potential as source of health-promoting compounds, such as rutin and solanesol, that are of high interest due to their medicinal properties. Naturally, they accumulate in plants growing in suboptimal growing conditions, e.g. influenced by biotic and abiotic stressors. With the aim to evaluate the potential use of tomato residues as source, we analyzed both leaf metabolites during a complete cultivation cycle, while applying single and combined stresses practically realized in greenhouse production. In the late season, contents of both metabolites were significantly enhanced by nutrient deficit in combination with 2 °C colder nights for 4 weeks and prolonged for in total 9 weeks. Particularly, higher solanesol contents were achieved by salt stress and elevated temperature after one week, even stronger when combined with drought. At harvest, stressed plants consist of less green biomass reducing the overall economic potential. However, practicable abiotic stresses should be considered as potential tool to induce the accumulation of beneficial compounds. Extracting profitable metabolites from the green biomass of the model crop tomato supports the overall goal to promote sustainable approaches in horticultural production.


Asunto(s)
Hojas de la Planta/química , Rutina/análisis , Solanum lycopersicum/química , Terpenos/análisis , Biomasa , Sequías
3.
Genes (Basel) ; 11(9)2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32867311

RESUMEN

The convenient model Arabidopsis thaliana has allowed tremendous advances in plant genetics and physiology, in spite of only being a weed. It has also unveiled the main molecular networks governing, among others, abiotic stress responses. Through the use of the latest genomic tools, Arabidopsis research is nowadays being translated to agronomically interesting crop models such as tomato, but at a lagging pace. Knowledge transfer has been hindered by invariable differences in plant architecture and behaviour, as well as the divergent direct objectives of research in Arabidopsis versus crops compromise transferability. In this sense, phenotype translation is still a very complex matter. Here, we point out the challenges of "translational phenotyping" in the case study of drought stress phenotyping in Arabidopsis and tomato. After briefly defining and describing drought stress and survival strategies, we compare drought stress protocols and phenotyping techniques most commonly used in the two species, and discuss their potential to gain insights, which are truly transferable between species. This review is intended to be a starting point for discussion about translational phenotyping approaches among plant scientists, and provides a useful compendium of methods and techniques used in modern phenotyping for this specific plant pair as a case study.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Productos Agrícolas/crecimiento & desarrollo , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Solanum lycopersicum/crecimiento & desarrollo , Estrés Fisiológico , Arabidopsis/genética , Arabidopsis/metabolismo , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Fenotipo , Proteínas de Plantas/metabolismo
4.
ACS Omega ; 4(21): 19071-19080, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31763530

RESUMEN

At the end of the annual horticultural production cycle of greenhouse-grown crops, large quantities of residual biomass are discarded. Here, we propose a new value chain to utilize horticultural leaf biomass for the extraction of secondary metabolites. To increase the secondary metabolite content of leaves, greenhouse-grown crop plants were exposed to low-cost abiotic stress treatments after the last fruit harvest. As proof of concept, we evaluated the production of the flavonoid rutin in tomato plants subjected to nitrogen deficiency. In an interdisciplinary approach, we observed the steady accumulation of rutin in young plants under nitrogen deficiency, tested the applicability of nitrogen deficiency in a commercial-like greenhouse, developed a high efficiency extraction for rutin, and evaluated the acceptance of the proposed value chain by its key actors economically. On the basis of the positive interdisciplinary evaluation, we identified opportunities and challenges for the successful establishment of horticultural leaf biomass as a novel source for secondary metabolites.

5.
Plant Physiol Biochem ; 130: 105-111, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29980095

RESUMEN

Agricultural residues are natural sources for secondary metabolites as high value ingredients for industrial uses. The present work aims to exploit the accumulation potential of rutin and solanesol in tomato leaves following nitrogen and general mineral deficiency in a commercial-like greenhouse. Physiological responses of tomato plants were monitored non-destructively with a multiparametric fluorescence sensor, and biochemical parameters were determined by means of HPLC analysis. Nitrogen and general mineral limitation led to an accumulation of rutin in young tomato leaves while solanesol concentration was higher in mature leaves. In young leaves, the fluorescence indices SFR_R and NBI_G showed lower values compared to control plants for both stress treatments. On the contrary, FLAV and ANTH_RG values increased during the experiment, but no differences could be recorded in mature leaves. However, correlation analysis indicates, that the FLAV index is not a reliable tool to estimate the concentration of rutin and solanesol tomato leaves. To monitor fruit yield/quality as primary objective of tomato production, fruits showing symptoms of blossom end rot (BER) were counted before and after stress treatments. BER was determined more frequently for plants grown under a general mineral deficiency, concluding that a practical applicability at the end of fruit production is advisable. Our results indicate that by-products from Solanaceae plants are promising resources for valuable bioactive leaf compounds. To achieve the highest concentrations, the seasonal variation, the optimal environmental conditions, the concentrations in different plant organs and varieties as well as different production systems are of high interest for commercial implementation.


Asunto(s)
Minerales/farmacología , Hojas de la Planta/metabolismo , Solanum lycopersicum/metabolismo , Frutas/crecimiento & desarrollo , Frutas/normas , Minerales/administración & dosificación , Minerales/metabolismo , Rutina/metabolismo , Microbiología del Suelo , Terpenos/metabolismo
6.
J Sci Food Agric ; 98(15): 5656-5665, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29722019

RESUMEN

BACKGROUND: We examined the suitability of chlorophyll fluorescence-based indices to monitor and predict concentrations of fruit maturity compounds during tomato ripening under different growing conditions in the greenhouse. The aim of this study was to evaluate the effects of chlorophyll concentration changes on fluorescence-based indices and to exploit the relation between fluorescence and reflectance indices with the corresponding maturity compounds determined analytically. RESULTS: Fruits grown under water deficit matured faster than control fruits as recorded with fluorescence-based indices. The SFR_R index correlated well with the analytical determination of chlorophyll content, whereas the single-signal FRF_G correlated with lycopene content even if the sensor was unable to differentiate precisely between maturity stages 2 to 4. Neither the FLAV index nor the FLAV_UV index was suitable for flavonoid prediction in tomato fruits. Compared with fluorescence indices, the relation between the reflection index and pigment concentrations was lower for chlorophyll and higher for lycopene. CONCLUSION: Chlorophyll and lycopene content in tomato fruits can be estimated by means of fluorescence indices during the pre-harvest phase. Since the chlorophyll decrease during tomato ripening is the driving force affecting all fluorescence signals, the methods are not reliable for estimation of other maturity compounds in tomato fruits. © 2018 Society of Chemical Industry.


Asunto(s)
Frutas/química , Extractos Vegetales/química , Solanum lycopersicum/crecimiento & desarrollo , Espectrofotometría Ultravioleta/métodos , Carotenoides/química , Clorofila/química , Color , Fluorescencia , Frutas/crecimiento & desarrollo , Licopeno , Solanum lycopersicum/química
7.
J Exp Bot ; 66(18): 5543-53, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25873673

RESUMEN

Cercospora leaf spot (CLS) infection can cause severe yield loss in sugar beet. Introduction of Cercospora-resistant varieties in breeding programmes is important for plant protection to reduce both fungicide applications and the risk of the development of fungal resistance. However, in vivo monitoring of the sugar-containing taproots at early stages of foliar symptoms and the characterization of the temporal development of disease progression has proven difficult. Non-invasive magnetic resonance imaging (MRI) measurements were conducted to quantify taproot development of genotypes with high (HS) and low (LS) levels of susceptibility after foliar Cercospora inoculation. Fourteen days post-inoculation (dpi) the ratio of infected leaf area was still low (~7%) in both the HS and LS genotypes. However, during this period, the volumetric growth of the taproot had already started to decrease. Additionally, inoculated plants showed a reduction of the increase in width of inner cambial rings while the width of outer rings increased slightly compared with non-inoculated plants. This response partly compensated for the reduced development of inner rings that had a vascular connection with Cercospora-inoculated leaves. Hence, alterations in taproot anatomical features such as volume and cambial ring development can be non-invasively detected already at 14 dpi, providing information on the early impact of the infection on whole-plant performance. All these findings show that MRI is a suitable tool to identify promising candidate parent lines with improved resistance to Cercospora, for example with comparatively lower taproot growth reduction at early stages of canopy infection, for future introduction into breeing programmes.


Asunto(s)
Ascomicetos/fisiología , Beta vulgaris/anatomía & histología , Beta vulgaris/genética , Beta vulgaris/crecimiento & desarrollo , Beta vulgaris/microbiología , Cámbium/anatomía & histología , Cámbium/crecimiento & desarrollo , Cámbium/microbiología , Imagen por Resonancia Magnética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Raíces de Plantas/anatomía & histología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología
8.
Plant Methods ; 11(1): 1, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25649124

RESUMEN

BACKGROUND: Combined assessment of leaf reflectance and transmittance is currently limited to spot (point) measurements. This study introduces a tailor-made hyperspectral absorption-reflectance-transmittance imaging (HyperART) system, yielding a non-invasive determination of both reflectance and transmittance of the whole leaf. We addressed its applicability for analysing plant traits, i.e. assessing Cercospora beticola disease severity or leaf chlorophyll content. To test the accuracy of the obtained data, these were compared with reflectance and transmittance measurements of selected leaves acquired by the point spectroradiometer ASD FieldSpec, equipped with the FluoWat device. RESULTS: The working principle of the HyperART system relies on the upward redirection of transmitted and reflected light (range of 400 to 2500 nm) of a plant sample towards two line scanners. By using both the reflectance and transmittance image, an image of leaf absorption can be calculated. The comparison with the dynamically high-resolution ASD FieldSpec data showed good correlation, underlying the accuracy of the HyperART system. Our experiments showed that variation in both leaf chlorophyll content of four different crop species, due to different fertilization regimes during growth, and fungal symptoms on sugar beet leaves could be accurately estimated and monitored. The use of leaf reflectance and transmittance, as well as their sum (by which the non-absorbed radiation is calculated) obtained by the HyperART system gave considerably improved results in classification of Cercospora leaf spot disease and determination of chlorophyll content. CONCLUSIONS: The HyperART system offers the possibility for non-invasive and accurate mapping of leaf transmittance and absorption, significantly expanding the applicability of reflectance, based on mapping spectroscopy, in plant sciences. Therefore, the HyperART system may be readily employed for non-invasive determination of the spatio-temporal dynamics of various plant properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...