Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1356337, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38533338

RESUMEN

The concept of the metaorganism describes a multicellular host and its diverse microbial community, which form one biological unit with a combined genetic repertoire that significantly influences health and survival of the host. The present study delved into the emerging field of bacteriophage research within metaorganisms, focusing on the moon jellyfish Aurelia aurita as a model organism. The previously isolated Pseudomonas phage BSwM KMM1 and Citrobacter phages BSwM KMM2 - KMM4 demonstrated potent infectivity on bacteria present in the A. aurita-associated microbiota. In a host-fitness experiment, Baltic Sea subpopulation polyps were exposed to individual phages and a phage cocktail, monitoring polyp survival and morphology, as well as microbiome changes. The following effects were obtained. First, phage exposure in general led to recoverable malformations in polyps without affecting their survival. Second, analyses of the community structure, using 16S rRNA amplicon sequencing, revealed alterations in the associated microbial community in response to phage exposure. Third, the native microbiota is dominated by an uncultured likely novel Mycoplasma species, potentially specific to A. aurita. Notably, this main colonizer showed resilience through the recovery after initial declines, which aligned with abundance changes in Bacteroidota and Proteobacteria, suggesting a dynamic and adaptable microbial community. Overall, this study demonstrates the resilience of the A. aurita metaorganism facing phage-induced perturbations, emphasizing the importance of understanding host-phage interactions in metaorganism biology. These findings have implications for ecological adaptation and conservation in the rapidly changing marine environment, particularly regarding the regulation of blooming species and the health of marine ecosystems during ongoing environmental changes.

2.
Microbiol Spectr ; 11(4): e0026223, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37378516

RESUMEN

Aurelia aurita's intricate life cycle alternates between benthic polyp and pelagic medusa stages. The strobilation process, a critical asexual reproduction mechanism in this jellyfish, is severely compromised in the absence of the natural polyp microbiome, with limited production and release of ephyrae. Yet, the recolonization of sterile polyps with a native polyp microbiome can correct this defect. Here, we investigated the precise timing necessary for recolonization as well as the host-associated molecular processes involved. We deciphered that a natural microbiota had to be present in polyps prior to the onset of strobilation to ensure normal asexual reproduction and a successful polyp-to-medusa transition. Providing the native microbiota to sterile polyps after the onset of strobilation failed to restore the normal strobilation process. The absence of a microbiome was associated with decreased transcription of developmental and strobilation genes as monitored by reverse transcription-quantitative PCR. Transcription of these genes was exclusively observed for native polyps and sterile polyps that were recolonized before the initiation of strobilation. We further propose that direct cell contact between the host and its associated bacteria is required for the normal production of offspring. Overall, our findings indicate that the presence of a native microbiome at the polyp stage prior to the onset of strobilation is essential to ensure a normal polyp-to-medusa transition. IMPORTANCE All multicellular organisms are associated with microorganisms that play fundamental roles in the health and fitness of the host. Notably, the native microbiome of the Cnidarian Aurelia aurita is crucial for the asexual reproduction by strobilation. Sterile polyps display malformed strobilae and a halt of ephyrae release, which is restored by recolonizing sterile polyps with a native microbiota. Despite that, little is known about the microbial impact on the strobilation process's timing and molecular consequences. The present study shows that A. aurita's life cycle depends on the presence of the native microbiome at the polyp stage prior to the onset of strobilation to ensure the polyp-to-medusa transition. Moreover, sterile individuals correlate with reduced transcription levels of developmental and strobilation genes, evidencing the microbiome's impact on strobilation on the molecular level. Transcription of strobilation genes was exclusively detected in native polyps and those recolonized before initiating strobilation, suggesting microbiota-dependent gene regulation.


Asunto(s)
Microbiota , Escifozoos , Animales , Humanos , Escifozoos/genética , Estadios del Ciclo de Vida/fisiología , Reacción en Cadena de la Polimerasa , Reproducción Asexuada
3.
FEBS J ; 288(18): 5350-5373, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33660383

RESUMEN

Small ORF (sORF)-encoded small proteins have been overlooked for a long time due to challenges in prediction and distinguishing between coding- and noncoding-predicted sORFs and in their biochemical detection and characterization. We report on the first biochemical and functional characterization of a small protein (sP26) in the archaeal model organism Methanosarcina mazei, comprising 23 amino acids. The corresponding encoding leaderless mRNA (spRNA26) is highly conserved on nucleotide level as well as on the coded amino acids within numerous Methanosarcina strains strongly arguing for a cellular function of the small protein. spRNA26 level is significantly enhanced under nitrogen limitation, but also under oxygen and salt stress conditions. Using heterologously expressed and purified sP26 in independent biochemical approaches [pull-down by affinity chromatography followed by MS analysis, reverse pull-down, microscale thermophoresis, size-exclusion chromatography, and nuclear magnetic resonance spectroscopy (NMR) analysis], we observed that sP26 interacts and forms complexes with M. mazei glutamine synthetase (GlnA1 ) with high affinity (app. KD  = 0.76 µm± 0.29 µm). Moreover, seven amino acids were identified by NMR analysis to directly interact with GlnA1 . Upon interaction with sP26, GlnA1 activity is significantly stimulated, independently and in addition to the known activation by the metabolite 2-oxoglutarate (2-OG). Besides, strong interaction of sP26 with the PII-like protein GlnK1 was demonstrated (app. KD  = 2.9 µm ± 0.9 µm). On the basis of these findings, we propose that in addition to 2-OG, sP26 enhances GlnA1 activity under nitrogen limitation most likely by stabilizing the dodecameric structure of GlnA1 .


Asunto(s)
Proteínas Arqueales/genética , Glutamato-Amoníaco Ligasa/genética , Methanosarcina/enzimología , Aminoácidos/genética , Regulación de la Expresión Génica Arqueal , Sistemas de Lectura Abierta/genética , ARN Mensajero/genética
4.
Microb Biotechnol ; 12(2): 305-323, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30381904

RESUMEN

Ammonia caused disturbance of biogas production is one of the most frequent incidents in regular operation of biogas reactors. This study provides a detailed insight into the microbial community of a mesophilic, full-scale biogas reactor (477 kWh h-1 ) fed with maize silage, dried poultry manure and cow manure undergoing initial process disturbance by increased ammonia concentration. Over a time period of 587 days, the microbial community of the reactor was regularly monitored on a monthly basis by high-throughput amplicon sequencing of the archaeal and bacterial 16S rRNA genes. During this sampling period, the total ammonia concentrations varied between 2.7 and 5.8 g l-1 [NH4 + -N]. To gain further inside into the active metabolic pathways, for selected time points metatranscriptomic shotgun analysis was performed allowing the quantification of marker genes for methanogenesis, hydrolysis and syntrophic interactions. The results obtained demonstrated a microbial community typical for a mesophilic biogas plant. However in response to the observed changing process conditions (e.g. increasing NH4 + levels, changing feedstock composition), the microbial community reacted highly flexible by changing and adapting the community composition. The Methanosarcina-dominated archaeal community was shifted to a Methanomicrobiales-dominated archaeal community in the presence of increased ammonia conditions. A similar trend as in the phylogenetic composition was observed in the transcription activity of genes coding for enzymes involved in acetoclastic methanogenesis and syntrophic acetate oxidations (Codh/Acs and Fthfs). In accordance, Clostridia simultaneously increased under elevated ammonia concentrations in abundance and were identified as the primary syntrophic interaction partner with the now Methanomicrobiales-dominated archaeal community. In conclusion, overall stable process performance was maintained during increased ammonia concentration in the studied reactor based on the microbial communities' ability to flexibly respond by reorganizing the community composition while remaining functionally stable.


Asunto(s)
Amoníaco/metabolismo , Archaea/clasificación , Bacterias/clasificación , Biocombustibles/microbiología , Reactores Biológicos/microbiología , Microbiota , Transcripción Genética , Archaea/genética , Bacterias/genética , Análisis por Conglomerados , Medios de Cultivo/química , ADN de Archaea/química , ADN de Archaea/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Estudios Longitudinales , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
5.
FEMS Microbiol Ecol ; 77(1): 146-53, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21428987

RESUMEN

The activity of the human armpit microbiota triggers the formation of body odor. We used differential 16S rRNA gene (rDNA)- and rRNA-based terminal-restriction fragment length polymorphism fingerprinting in combination with cloning and sequencing to identify active members of the human armpit microbiota. DNA and RNA were isolated from skin scrub samples taken from both armpits of 10 preconditioned, healthy males. The fingerprint profiles indicated pronounced similarities between the armpit microbiota in the right and the left axillae of an individual test person, but larger differences between the axilla microbiota of different individuals. Using 16S rDNA and rRNA sequence data, the majority of peaks in the armpit profiles were assigned to bacteria affiliated with well-known genera of skin bacteria. The relative abundances of all groups were similar among the rDNA and rRNA samples, suggesting that all groups of armpit bacteria were active. Surprisingly, the relative abundance of sequences affiliated with Peptoniphilus sp. was by far and with statistical significance the highest in the rRNA samples of the right armpits. Thus, bacteria affiliated with Peptoniphilus sp. might have been particularly active in the right axillae of the test persons, possibly owing to the handedness of the test persons, which might cause different environmental conditions in the right axillae.


Asunto(s)
Axila/microbiología , Bacterias/genética , Metagenoma , Piel/microbiología , Bacterias/clasificación , Bacterias/aislamiento & purificación , Dermatoglifia del ADN , ADN Bacteriano/genética , Humanos , Masculino , Filogenia , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...