Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 32(10): 3552-62, 2012 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-22399777

RESUMEN

The presence of gap junctions between rods in mammalian retina suggests a role for rod-rod coupling in human vision. Rod coupling is known to reduce response variability, but because junctional conductances are not known, the downstream effects on visual performance are uncertain. Here we assessed rod coupling in guinea pig retina by measuring: (1) the variability in responses to dim flashes, (2) Neurobiotin tracer coupling, and (3) junctional conductances. Results were consolidated into an electrical network model and a model of human psychophysical detection. Guinea pig rods form tracer pools of 1 to ∼20 rods, with junctional conductances averaging ∼350 pS. We calculate that coupling will reduce human dark-adapted sensitivity ∼10% by impairing the noise filtering of the synapse between rods and rod bipolar cells. However, coupling also mitigates synaptic saturation and is thus calculated to improve sensitivity when stimuli are spatially restricted or are superimposed over background illumination.


Asunto(s)
Adaptación a la Oscuridad/fisiología , Uniones Comunicantes/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Percepción Visual/fisiología , Animales , Femenino , Cobayas , Humanos , Macaca mulatta , Masculino , Modelos Neurológicos , Estimulación Luminosa/métodos
2.
J Neurosci ; 30(2): 568-72, 2010 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-20071519

RESUMEN

The neural coding of human color vision begins in the retina. The outputs of long (L)-, middle (M)-, and short (S)-wavelength-sensitive cone photoreceptors combine antagonistically to produce "red-green" and "blue-yellow" spectrally opponent signals (Hering, 1878; Hurvich and Jameson, 1957). Spectral opponency is well established in primate retinal ganglion cells (Reid and Shapley, 1992; Dacey and Lee, 1994; Dacey et al., 1996), but the retinal circuitry creating the opponency remains uncertain. Here we find, from whole-cell recordings of photoreceptors in macaque monkey, that "blue-yellow" opponency is already present in the center-surround receptive fields of S cones. The inward current evoked by blue light derives from phototransduction within the outer segment of the S cone. The outward current evoked by yellow light is caused by feedback from horizontal cells that are driven by surrounding L and M cones. Stimulation of the surround modulates calcium conductance in the center S cone.


Asunto(s)
Percepción de Color/fisiología , Color , Retina/citología , Células Fotorreceptoras Retinianas Conos/fisiología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Biorretroalimentación Psicológica/fisiología , Biofisica , Calcio/metabolismo , Antagonistas de Aminoácidos Excitadores/farmacología , Técnicas In Vitro , Luz , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Inhibición Neural/efectos de los fármacos , Técnicas de Placa-Clamp/métodos , Estimulación Luminosa/métodos , Bloqueadores de los Canales de Potasio/farmacología , Primates/anatomía & histología , Células Fotorreceptoras Retinianas Conos/clasificación , Tetraetilamonio/farmacología , Campos Visuales/fisiología
3.
J Neurosci ; 25(48): 11201-9, 2005 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-16319320

RESUMEN

We investigated gap-junctional coupling of rods and cones in macaque retina. Cone voltage responses evoked by light absorption in neighboring rods were briefer and smaller than responses recorded in the rods themselves. Rod detection thresholds, calculated from noise and response amplitude histograms, closely matched the threshold for an ideal detector limited by quantal fluctuations in the stimulus. Surprisingly, cone thresholds were only approximately two times higher. Amplitude fluctuations in cones could be explained by a Poisson distribution of photoisomerizations within a pool of seven or more coupled rods. Neurobiotin coupling between rods and cones was consistent with our electrical recordings, with approximately six rods labeled per injected cone. The spatial distribution of tracer-coupled rods matched the light-evoked cone receptive field. The gap junction inhibitor carbenoxolone abolished both electrical and tracer coupling. Amplitude fluctuations in most rods were accounted for by the expected rate of light absorption in their outer segments. The fluctuations in some rods, however, were consistent with a summation pool of up to six rods. When single rods were injected with Neurobiotin, up to 10 rods were labeled. Rod-rod and rod-cone electrical coupling is expected to extend the range of scotopic vision by circumventing saturation at the rod to rod-bipolar cell synapse; however, because coupling also renders the rod synapse less effective at separating out photon signals from dark noise, coupling is expected to elevate the absolute threshold of dark-adapted observers.


Asunto(s)
Uniones Comunicantes/fisiología , Luz , Macaca/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología , Animales , Biotina/análogos & derivados , Electrofisiología , Macaca fascicularis , Macaca mulatta , Células Fotorreceptoras Retinianas Conos/efectos de la radiación , Células Fotorreceptoras Retinianas Bastones/efectos de la radiación , Umbral Sensorial
4.
Nat Neurosci ; 7(7): 745-50, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15208634

RESUMEN

Color vision in humans and other Old World primates depends on differences in the absorption properties of three spectral types of cone photoreceptors. Primate cones are linked by gap junctions, but it is not known to what extent the various cone types are electrically coupled through these junctions. Here we show, by using a combination of dye labeling and electrical recordings in the retina of macaque monkeys, that neighboring red and green cones are homologously and heterologously coupled by nonrectifying gap junctions. This indiscriminate coupling blurs the differences between red- and green-cone signals. The average junctional conductance is about 650 pS. Our calculations indicate that coupling between red and green cones may cause a modest decrease in human color discrimination with a comparable increase in luminance discrimination.


Asunto(s)
Biotina/análogos & derivados , Percepción de Color/fisiología , Uniones Comunicantes/fisiología , Retina/citología , Células Fotorreceptoras Retinianas Conos/fisiología , Animales , Biotina/metabolismo , Percepción de Color/clasificación , Conductividad Eléctrica , Colorantes Fluorescentes/metabolismo , Humanos , Inmunohistoquímica/métodos , Uniones Intercelulares/metabolismo , Macaca fascicularis , Potenciales de la Membrana/fisiología , Modelos Neurológicos , Técnicas de Placa-Clamp/métodos , Células Fotorreceptoras Retinianas Conos/citología , Análisis Espectral/métodos , Factores de Tiempo
5.
J Neurosci ; 23(32): 10249-57, 2003 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-14614083

RESUMEN

Center-surround antagonism is a hallmark feature of the receptive fields of sensory neurons. In retinas of lower vertebrates, surround antagonism derives in part from inhibition of cone photoreceptors by horizontal cells. Using whole-cell patch recording methods, we found that light-evoked responses of cones in macaque monkey were antagonized when surrounding cones were illuminated. The spatial and spectral properties of this antagonism indicate that it results from inhibition by horizontal cells. It has been suggested that horizontal cell inhibition is mediated by the neurotransmitter GABA. The inhibition observed here, however, was inconsistent with a GABA-gated chloride conductance mechanism. Instead, surround illumination evoked an increase in calcium conductance and calcium-activated chloride conductance in cones. We expect that these conductances modulate neurotransmitter release at the cone synapse and increase visual sensitivity to spatial contrast.


Asunto(s)
Macaca fascicularis/fisiología , Macaca mulatta/fisiología , Inhibición Neural/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Canales de Cloruro/metabolismo , Cloruros/metabolismo , Cobalto/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Técnicas In Vitro , Activación del Canal Iónico/fisiología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Inhibición Neural/efectos de los fármacos , Técnicas de Placa-Clamp , Estimulación Luminosa/métodos , Células Fotorreceptoras Retinianas Conos/citología , Células Fotorreceptoras Retinianas Conos/efectos de los fármacos , Campos Visuales/fisiología , Ácido gamma-Aminobutírico/metabolismo , Ácido gamma-Aminobutírico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...