Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Vasc Surg ; 77(2): 567-577.e2, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36306935

RESUMEN

OBJECTIVE: Prior research on median arcuate ligament syndrome has been limited to institutional case series, making the optimal approach to median arcuate ligament release (MALR) and resulting outcomes unclear. In the present study, we compared the outcomes of different approaches to MALR and determined the predictors of long-term treatment failure. METHODS: The Vascular Low Frequency Disease Consortium is an international, multi-institutional research consortium. Data on open, laparoscopic, and robotic MALR performed from 2000 to 2020 were gathered. The primary outcome was treatment failure, defined as no improvement in median arcuate ligament syndrome symptoms after MALR or symptom recurrence between MALR and the last clinical follow-up. RESULTS: For 516 patients treated at 24 institutions, open, laparoscopic, and robotic MALR had been performed in 227 (44.0%), 235 (45.5%), and 54 (10.5%) patients, respectively. Perioperative complications (ileus, cardiac, and wound complications; readmissions; unplanned procedures) occurred in 19.2% (open, 30.0%; laparoscopic, 8.9%; robotic, 18.5%; P < .001). The median follow-up was 1.59 years (interquartile range, 0.38-4.35 years). For the 488 patients with follow-up data available, 287 (58.8%) had had full relief, 119 (24.4%) had had partial relief, and 82 (16.8%) had derived no benefit from MALR. The 1- and 3-year freedom from treatment failure for the overall cohort was 63.8% (95% confidence interval [CI], 59.0%-68.3%) and 51.9% (95% CI, 46.1%-57.3%), respectively. The factors associated with an increased hazard of treatment failure on multivariable analysis included robotic MALR (hazard ratio [HR], 1.73; 95% CI, 1.16-2.59; P = .007), a history of gastroparesis (HR, 1.83; 95% CI, 1.09-3.09; P = .023), abdominal cancer (HR, 10.3; 95% CI, 3.06-34.6; P < .001), dysphagia and/or odynophagia (HR, 2.44; 95% CI, 1.27-4.69; P = .008), no relief from a celiac plexus block (HR, 2.18; 95% CI, 1.00-4.72; P = .049), and an increasing number of preoperative pain locations (HR, 1.12 per location; 95% CI, 1.00-1.25; P = .042). The factors associated with a lower hazard included increasing age (HR, 0.99 per increasing year; 95% CI, 0.98-1.0; P = .012) and an increasing number of preoperative diagnostic gastrointestinal studies (HR, 0.84 per study; 95% CI, 0.74-0.96; P = .012) Open and laparoscopic MALR resulted in similar long-term freedom from treatment failure. No radiographic parameters were associated with differences in treatment failure. CONCLUSIONS: No difference was found in long-term failure after open vs laparoscopic MALR; however, open release was associated with higher perioperative morbidity. These results support the use of a preoperative celiac plexus block to aid in patient selection. Operative candidates for MALR should be counseled regarding the factors associated with treatment failure and the relatively high overall rate of treatment failure.


Asunto(s)
Laparoscopía , Síndrome del Ligamento Arcuato Medio , Humanos , Síndrome del Ligamento Arcuato Medio/diagnóstico por imagen , Síndrome del Ligamento Arcuato Medio/cirugía , Síndrome del Ligamento Arcuato Medio/complicaciones , Arteria Celíaca/diagnóstico por imagen , Arteria Celíaca/cirugía , Insuficiencia del Tratamiento , Dolor Abdominal/etiología , Ligamentos/cirugía , Laparoscopía/efectos adversos
2.
Tissue Eng Part C Methods ; 26(6): 332-346, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32390520

RESUMEN

Hydrogels derived from decellularized lungs are promising materials for tissue engineering in the development of clinical therapies and for modeling the lung extracellular matrix (ECM) in vitro. Characterizing and controlling the resulting physical, biochemical, mechanical, and biologic properties of decellularized ECM (dECM) after enzymatic solubilization and gelation are thus of key interest. As the role of enzymatic pepsin digestion in effecting these properties has been understudied, we investigated the digestion time-dependency on key parameters of the resulting ECM hydrogel. Using resolubilized, homogenized decellularized pig lung dECM as a model system, significant time-dependent changes in protein concentration, turbidity, and gelation potential were found to occur between the 4 and 24 h digestion time points, and plateauing with longer digestion times. These results correlated with qualitative scanning electron microscopy images and quantitative analysis of hydrogel interconnectivity and average fiber diameter. Interestingly, the time-dependent changes in the storage modulus tracked with the hydrogel interconnectivity results, while the Young's modulus values were more closely related to average fiber size at each time point. The structural and biochemical alterations correlated with significant changes in metabolic activity of several representative lung cells seeded onto the hydrogels with progressive decreases in cell viability and alterations in morphology observed in cells cultured on hydrogels produced with dECM digested for >12 and up to 72 h of digestion. These studies demonstrate that 12 h pepsin digest of pig lung dECM provides an optimal balance between desirable physical ECM hydrogel properties and effects on lung cell behaviors.


Asunto(s)
Matriz Extracelular/química , Hidrogeles/química , Pulmón/química , Pepsina A/metabolismo , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Pulmón/metabolismo , Porcinos
3.
ACS Biomater Sci Eng ; 3(12): 3480-3492, 2017 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33445384

RESUMEN

Chronic respiratory disease affects many people worldwide with little known about the intricate mechanisms driving the pathology, making it difficult to develop novel therapies. Improving the understanding of airway smooth muscle and extracellular matrix (ECM) interactions is key to developing treatments for this leading cause of death. With currently no relevant or controllable in vivo or in vitro models to investigate cell-ECM interactions in the small airways, the development of a biomimetic in vitro model with cell attachment, signaling, and organization is needed. The goal of this study was to create a biologically and structurally relevant in vitro model of small airway smooth muscle. In order to achieve this goal, a scaffold was engineered from synthetic poly-l-lactic acid (PLLA) and decellularized pig lung ECM (PLECM). PLECM scaffolds have improved physical characteristics over synthetic scaffolds, by exhibiting a significant decrease in the elastic modulus and an increase in hydrophilicity. Histological staining and SDS-PAGE showed that essential proteins or protein fragments found in natural ECM were present after processing. Human bronchial smooth muscle cells (HBSMCs) seeded onto PLECM 3D scaffolds formed confluent layers and maintained a contractile phenotype, as demonstrated by the organized arrangement of actin filaments within the cell and expected contractile protein expression of calponin 1. HBSMCs cultured on electrospun PLECM scaffold also increased alpha-1 type 1 collagen compared to those cultured on PLLA scaffolds. In summary, this research demonstrates that a PLLA/PLECM composite electrospun mat is a promising tool to produce an in vitro model of the airway with the potential for a better understanding of bronchiole smooth muscle behavior in diseased or normal states.

4.
Exp Gerontol ; 81: 101-9, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27188767

RESUMEN

BACKGROUND: Approximately 800 thousand patients require mechanical ventilation in the United States annually with an in-hospital mortality rate of over 30%. The majority of patients requiring mechanical ventilation are over the age of 65 and advanced age is known to increase the severity of ventilator-induced lung injury (VILI) and in-hospital mortality rates. However, the mechanisms which predispose aging ventilator patients to increased mortality rates are not fully understood. Ventilation with conservative fluid management decreases mortality rates in acute respiratory distress patients, but to date there has been no investigation of the effect of conservative fluid management on VILI and ventilator associated mortality rates. We hypothesized that age-associated increases in susceptibility and incidence of pulmonary edema strongly promote age-related increases in ventilator associated mortality. METHODS: 2month old and 20month old male C57BL6 mice were mechanically ventilated with either high tidal volume (HVT) or low tidal volume (LVT) for up to 4h with either liberal or conservative fluid support. During ventilation, lung compliance, total lung capacity, and hysteresis curves were quantified. Following ventilation, bronchoalveolar lavage fluid was analyzed for total protein content and inflammatory cell infiltration. Wet to dry ratios were used to directly measure edema in excised lungs. Lung histology was performed to quantify alveolar barrier damage/destruction. Age matched non-ventilated mice were used as controls. RESULTS: At 4h, both advanced age and HVT ventilation significantly increased markers of inflammation and injury, degraded pulmonary mechanics, and decreased survival rates. Conservative fluid support significantly diminished pulmonary edema and improved pulmonary mechanics by 1h in advanced age HVT subjects. In 4h ventilations, conservative fluid support significantly diminished pulmonary edema, improved lung mechanics, and resulted in significantly lower mortality rates in older subjects. CONCLUSION: Our study demonstrates that conservative fluid alone can attenuate the age associated increase in ventilator associated mortality.


Asunto(s)
Envejecimiento , Fluidoterapia/métodos , Pulmón/patología , Lesión Pulmonar Inducida por Ventilación Mecánica/terapia , Animales , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Inflamación/patología , Estimación de Kaplan-Meier , Masculino , Ratones , Ratones Endogámicos C57BL , Volumen de Ventilación Pulmonar , Lesión Pulmonar Inducida por Ventilación Mecánica/mortalidad , Lesión Pulmonar Inducida por Ventilación Mecánica/patología
5.
J Biomed Mater Res A ; 104(8): 1922-35, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27012815

RESUMEN

The complexity and rapid clearance mechanisms of lung tissue make it difficult to develop effective treatments for many chronic pathologies. We are investigating lung derived extracellular matrix (ECM) hydrogels as a novel approach for delivery of cellular therapies to the pulmonary system. The main objectives of this study include effective decellularization of porcine lung tissue, development of a hydrogel from the porcine ECM, and characterization of the material's composition, mechanical properties, and ability to support cellular growth. Our evaluation of the decellularized tissue indicated successful removal of cellular material and immunogenic remnants in the ECM. The self-assembly of the lung ECM hydrogel was rapid, reaching maximum modulus values within 3 min at 37°C. Rheological characterization showed the lung ECM hydrogel to have a concentration dependent storage modulus between 15 and 60 Pa. The purpose of this study was to evaluate our novel ECM derived hydrogel and measure its ability to support 3D culture of MSCs in vitro and in vivo delivery of MSCs. Our in vitro experiments using human mesenchymal stem cells demonstrated our novel ECM hydrogel's ability to enhance cellular attachment and viability. Our in vivo experiments demonstrated that rat MSC delivery in pre-gel solution significantly increased cell retention in the lung over 24 h in an emphysema rat model. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1922-1935, 2016.


Asunto(s)
Matriz Extracelular/metabolismo , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacología , Pulmón/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Electroforesis en Gel de Poliacrilamida , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inflamación/patología , Cinética , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Elastasa Pancreática , Ratas Sprague-Dawley , Reología , Sus scrofa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...