Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genome Biol ; 24(1): 254, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932818

RESUMEN

We introduce DEQSeq, a nanopore sequencing approach that rationalizes the selection of favorable genome editing enzymes from directed molecular evolution experiments. With the ability to capture full-length sequences, editing efficiencies, and specificities from thousands of evolved enzymes simultaneously, DEQSeq streamlines the process of identifying the most valuable variants for further study and application. We apply DEQSeq to evolved libraries of Cas12f-ABEs and designer-recombinases, identifying variants with improved properties for future applications. Our results demonstrate that DEQSeq is a powerful tool for accelerating enzyme discovery and advancing genome editing research.


Asunto(s)
Evolución Molecular Dirigida , Recombinasas , Recombinasas/genética , Recombinasas/metabolismo , Evolución Molecular Dirigida/métodos , Edición Génica/métodos , ADN , Sistemas CRISPR-Cas
2.
Genes (Basel) ; 11(5)2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32384610

RESUMEN

In contrast to CRISPR/Cas9 nucleases, CRISPR base editors (BE) and prime editors (PE) enable predefined nucleotide exchanges in genomic sequences without generating DNA double strand breaks. Here, we employed BE and PE mRNAs in conjunction with chemically synthesized sgRNAs and pegRNAs for efficient editing of human induced pluripotent stem cells (iPSC). Whereas we were unable to correct a disease-causing mutation in patient derived iPSCs using a CRISPR/Cas9 nuclease approach, we corrected the mutation back to wild type with high efficiency utilizing an adenine BE. We also used adenine and cytosine BEs to introduce nine different cancer associated TP53 mutations into human iPSCs with up to 90% efficiency, generating a panel of cell lines to investigate the biology of these mutations in an isogenic background. Finally, we pioneered the use of prime editing in human iPSCs, opening this important cell type for the precise modification of nucleotides not addressable by BEs and to multiple nucleotide exchanges. These approaches eliminate the necessity of deriving disease specific iPSCs from human donors and allows the comparison of different disease-causing mutations in isogenic genetic backgrounds.


Asunto(s)
Adenina/química , Sistemas CRISPR-Cas , Citosina/química , Edición Génica/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Mutagénesis , Mutación , ARN Mensajero/genética , Aminohidrolasas , Enfermedades Autoinmunes del Sistema Nervioso/genética , Secuencia de Bases , Proteína 9 Asociada a CRISPR , Línea Celular , Técnicas de Reprogramación Celular , Cuerpos Embrioides , Genes p53 , Células HEK293 , Humanos , Imidazoles/farmacología , Malformaciones del Sistema Nervioso/genética , Piperazinas/farmacología , ARN Guía de Kinetoplastida/genética , ARN Mensajero/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...