Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotechnol Biofuels Bioprod ; 15(1): 70, 2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35751080

RESUMEN

BACKGROUND: Lignocellulosic conversion residue (LCR) is the material remaining after deconstructed lignocellulosic biomass is subjected to microbial fermentation and treated to remove the biofuel. Technoeconomic analyses of biofuel refineries have shown that further microbial processing of this LCR into other bioproducts may help offset the costs of biofuel generation. Identifying organisms able to metabolize LCR is an important first step for harnessing the full chemical and economic potential of this material. In this study, we investigated the aerobic LCR utilization capabilities of 71 Streptomyces and 163 yeast species that could be engineered to produce valuable bioproducts. The LCR utilization by these individual microbes was compared to that of an aerobic mixed microbial consortium derived from a wastewater treatment plant as representative of a consortium with the highest potential for degrading the LCR components and a source of genetic material for future engineering efforts. RESULTS: We analyzed several batches of a model LCR by chemical oxygen demand (COD) and chromatography-based assays and determined that the major components of LCR were oligomeric and monomeric sugars and other organic compounds. Many of the Streptomyces and yeast species tested were able to grow in LCR, with some individual microbes capable of utilizing over 40% of the soluble COD. For comparison, the maximum total soluble COD utilized by the mixed microbial consortium was about 70%. This represents an upper limit on how much of the LCR could be valorized by engineered Streptomyces or yeasts into bioproducts. To investigate the utilization of specific components in LCR and have a defined media for future experiments, we developed a synthetic conversion residue (SynCR) to mimic our model LCR and used it to show lignocellulose-derived inhibitors (LDIs) had little effect on the ability of the Streptomyces species to metabolize SynCR. CONCLUSIONS: We found that LCR is rich in carbon sources for microbial utilization and has vitamins, minerals, amino acids and other trace metabolites necessary to support growth. Testing diverse collections of Streptomyces and yeast species confirmed that these microorganisms were capable of growth on LCR and revealed a phylogenetic correlation between those able to best utilize LCR. Identification and quantification of the components of LCR enabled us to develop a synthetic LCR (SynCR) that will be a useful tool for examining how individual components of LCR contribute to microbial growth and as a substrate for future engineering efforts to use these microorganisms to generate valuable bioproducts.

2.
FEMS Yeast Res ; 19(3)2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31076749

RESUMEN

Budding yeasts are distributed across a wide range of habitats, including as human commensals. However, under some conditions, these commensals can cause superficial, invasive, and even lethal infections. Despite their importance to human health, little is known about the ecology of these opportunistic pathogens, aside from their associations with mammals and clinical environments. During a survey of approximately 1000 non-clinical samples across the United States of America, we isolated 54 strains of budding yeast species considered opportunistic pathogens, including Candida albicans and Candida (Nakaseomyces) glabrata. We found that, as a group, pathogenic yeasts were positively associated with fruits and soil environments, whereas the species Pichia kudriavzevii (syn. Candida krusei syn. Issatchenkia orientalis) had a significant association with plants. Of the four species that cause 95% of candidiasis, we found a positive association with soil. These results suggest that pathogenic yeast ecology is more complex and diverse than is currently appreciated and raises the possibility that these additional environments could be a point of contact for human infections.


Asunto(s)
Frutas/microbiología , Plantas/microbiología , Saccharomycetales/aislamiento & purificación , Saccharomycetales/patogenicidad , Microbiología del Suelo , Candida/aislamiento & purificación , Candida/patogenicidad , Pruebas de Sensibilidad Microbiana , Pichia/aislamiento & purificación , Saccharomycetales/clasificación , Estados Unidos
3.
Cell ; 175(6): 1533-1545.e20, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30415838

RESUMEN

Budding yeasts (subphylum Saccharomycotina) are found in every biome and are as genetically diverse as plants or animals. To understand budding yeast evolution, we analyzed the genomes of 332 yeast species, including 220 newly sequenced ones, which represent nearly one-third of all known budding yeast diversity. Here, we establish a robust genus-level phylogeny comprising 12 major clades, infer the timescale of diversification from the Devonian period to the present, quantify horizontal gene transfer (HGT), and reconstruct the evolution of 45 metabolic traits and the metabolic toolkit of the budding yeast common ancestor (BYCA). We infer that BYCA was metabolically complex and chronicle the tempo and mode of genomic and phenotypic evolution across the subphylum, which is characterized by very low HGT levels and widespread losses of traits and the genes that control them. More generally, our results argue that reductive evolution is a major mode of evolutionary diversification.


Asunto(s)
Evolución Molecular , Transferencia de Gen Horizontal , Genoma Fúngico , Filogenia , Saccharomycetales/clasificación , Saccharomycetales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...