Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839059

RESUMEN

Lipid nanoparticles (LNP) have emerged as pivotal delivery vehicles for RNA therapeutics. Previous research and development usually assumed that LNPs are homogeneous in population, loading density, and composition. Such perspectives are difficult to examine due to the lack of suitable tools to characterize these physicochemical properties at the single-nanoparticle level. Here, we report an integrated spectroscopy-chromatography approach as a generalizable strategy to dissect the complexities of multicomponent LNP assembly. Our platform couples cylindrical illumination confocal spectroscopy (CICS) with single-nanoparticle free solution hydrodynamic separation (SN-FSHS) to simultaneously profile population identity, hydrodynamic size, RNA loading levels, and distributions of helper lipid and PEGylated lipid of LNPs at the single-particle level and in a high-throughput manner. Using a benchmark siRNA LNP formulation, we demonstrate the capability of this platform by distinguishing seven distinct LNP populations, quantitatively characterizing size distribution and RNA loading level in wide ranges, and more importantly, resolving composition-size correlations. This SN-FSHS-CICS analysis provides critical insights into a substantial degree of heterogeneity in the packing density of RNA in LNPs and size-dependent loading-size correlations, explained by kinetics-driven assembly mechanisms of RNA LNPs.

2.
Nanoscale ; 15(22): 9801-9812, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37200016

RESUMEN

With its lack of commonly targeted receptors, triple negative breast cancer (TNBC) is aggressive and difficult to treat. To address this problem, nanotubes self-assembled from single stranded DNA (ssDNA)-amphiphiles were used as a delivery vehicle for doxorubicin (DOX) to target TNBC cells. Since DOX and other standard of care treatments such as radiation have been documented to induce senescence, the ability of the nanotubes to deliver the senolytic ABT-263 was also investigated. The ssDNA-amphiphiles were synthesized from a 10 nucleotide sequence attached to a dialkyl, (C16)2, tail via a C12 alkyl spacer, and have been previously shown to self-assemble into hollow nanotubes and spherical micelles. Here, we demontrate that these ssDNA spherical micelles could transition into long nanotubes in the presence of excess tails. The nanotubes could then be shortened via probe sonication. The ssDNA nanotubes internalized into three different TNBC cell lines: Sum159, MDA-MB-231, and BT549, with minimal internalization in healthy Hs578Bst cells, suggesting an inherent targeting ability. Inhibition of different internalization mechanisms showed that the nanotubes internalized in the TNBC cells primarily through macropinocytosis and scavenger receptor-mediated endocytosis, both of which are upregulated pathways in TNBC. DOX was intercalated into the ssDNA nanotubes and delivered to TNBC cells. Compared to free DOX, DOX-intercalated nanotubes proved equally cytotoxic to TNBC cells. In order to demonstrate the potential for delivery of different therapeutics, ABT-263 was incorporated into the hydrophobic bilayer wall of the nanotubes and was delivered to a DOX-induced in vitro model of senescence. The ABT-263 encapsulating nanotubes demonstrated cytotoxicity to senescent TNBC cells as well as sensitization to further DOX treatment. Thus, our ssDNA nanotubes are a promising delivery vehicle that could be used for targeted delivery of therapeutics to TNBC cells.


Asunto(s)
Nanotubos , Neoplasias de la Mama Triple Negativas , Humanos , Micelas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Senoterapéuticos , ADN de Cadena Simple , Doxorrubicina/farmacología , Línea Celular Tumoral , Nanotubos/química
3.
Nat Commun ; 13(1): 5561, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36151112

RESUMEN

Lipid nanoparticles (LNPs) are effective vehicles to deliver mRNA vaccines and therapeutics. It has been challenging to assess mRNA packaging characteristics in LNPs, including payload distribution and capacity, which are critical to understanding structure-property-function relationships for further carrier development. Here, we report a method based on the multi-laser cylindrical illumination confocal spectroscopy (CICS) technique to examine mRNA and lipid contents in LNP formulations at the single-nanoparticle level. By differentiating unencapsulated mRNAs, empty LNPs and mRNA-loaded LNPs via coincidence analysis of fluorescent tags on different LNP components, and quantitatively resolving single-mRNA fluorescence, we reveal that a commonly referenced benchmark formulation using DLin-MC3 as the ionizable lipid contains mostly 2 mRNAs per loaded LNP with a presence of 40%-80% empty LNPs depending on the assembly conditions. Systematic analysis of different formulations with control variables reveals a kinetically controlled assembly mechanism that governs the payload distribution and capacity in LNPs. These results form the foundation for a holistic understanding of the molecular assembly of mRNA LNPs.


Asunto(s)
Lípidos , Nanopartículas , Lípidos/química , Liposomas , Nanopartículas/química , ARN Mensajero/química , ARN Mensajero/genética , ARN Interferente Pequeño/genética
4.
Bioconjug Chem ; 33(11): 2035-2040, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-35699360

RESUMEN

In this work, we demonstrate the formation of supramolecular architectures from the assembly of single-tail single stranded DNA (ssDNA)-amphiphiles. Short ssDNA sequences of 10 nucleotides that were either unstructured or formed G-quadruplex secondary structures were conjugated to a single 4-(hexadecyloxy)benzamide tail, either directly or through a polycarbon (C12) spacer. Conjugation of the ssDNA to the tail did not interfere with the G-quadruplex secondary structure of the ssDNA sequence. The ssDNA-amphiphiles self-assembled into ellipsoidal micelles, vesicles, nanotapes, and nanotubes. These nanotubes appeared to be formed by the rolling up of nanotapes. The increase of the hydrophobic block of the ssDNA-amphiphiles through the addition of a C12 spacer led to an increase in wall thickness and nanotube diameter. The presence of π-π interactions, through the benzoic group, was verified via X-ray diffraction (XRD) and played a critical role in the formation of the different nanostructures. In contrast, ssDNA-amphiphiles with a single heptadecanoic acid tail self-assembled only into ellipsoidal micelles.


Asunto(s)
G-Cuádruplex , Nanotubos , ADN de Cadena Simple , Micelas , Interacciones Hidrofóbicas e Hidrofílicas , Nanotubos/química
5.
Sci Rep ; 12(1): 8433, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589938

RESUMEN

CAP256V2LS, a broadly neutralizing monoclonal antibody (bNAb), is being pursued as a promising drug for HIV-1 prevention. The total level of tyrosine-O-sulfation, a post-translational modification, was known to play a key role for antibody biological activity. More importantly, here wedescribe for the first time the significance of the tyrosine-O-sulfation proteoforms. We developed a hydrophobic interaction chromatography (HIC) method to separate and quantify different sulfation proteoforms, which led to the direct functionality assessment of tyrosine-sulfated species. The fully sulfated (4-SO3) proteoform demonstrated the highest in vitro relative antigen binding potency and neutralization efficiency against a panel of HIV-1 viruses. Interestingly, highly variable levels of 4-SO3 were produced by different clonal CHO cell lines, which helped the bNAb process development towards production of a highly potent CAP256V2LS clinical product with high 4-SO3 proteoform. This study presents powerful insight for any biotherapeutic protein development where sulfation may play an important role in product efficacy.


Asunto(s)
VIH-1 , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Neutralizantes , Anticuerpos ampliamente neutralizantes , Células CHO , Cricetinae , Anticuerpos Anti-VIH , Tirosina/química
6.
Sci Adv ; 7(49): eabl5872, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34851666

RESUMEN

Effective treatment of glioblastoma remains a daunting challenge. One of the major hurdles in the development of therapeutics is their inability to cross the blood-brain tumor barrier (BBTB). Local delivery is an alternative approach that can still suffer from toxicity in the absence of target selectivity. Here, we show that nanotubes formed from self-assembly of ssDNA-amphiphiles are stable in serum and nucleases. After bilateral brain injections, nanotubes show preferential retention by tumors compared to normal brain and are taken up by glioblastoma cells through scavenger receptor binding and macropinocytosis. After intravenous injection, they cross the BBTB and internalize in glioblastoma cells. In a minimal residual disease model, local delivery of doxorubicin showed signs of toxicity in the spleen and liver. In contrast, delivery of doxorubicin by the nanotubes resulted in no systemic toxicity and enhanced mouse survival. Our results demonstrate that ssDNA nanotubes are a promising drug delivery vehicle to glioblastoma.

7.
Pharmaceutics ; 13(8)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34452076

RESUMEN

Despite potential for clinical efficacy, therapeutic delivery of microRNAs (miRNA) remains a major translational barrier. Here, we explore a strategy for miRNA delivery in the treatment of glioblastoma, the most common form of adult brain cancer, that involves complexation of miRNA with polyethylenimine (PEI) and encapsulation in targeted liposomes. miRNA 603 (miR-603) is a master regulatory miRNA that suppresses glioblastoma radiation resistance through down-regulation of insulin-like growth factor 1 (IGF1) signaling. miR-603 was complexed with PEI, a cationic polymer, and encapsulated into liposomes decorated with polyethylene glycol (PEG) and PR_b, a fibronectin-mimetic peptide that specifically targets the α5ß1 integrin that is overexpressed in glioblastomas. Cultured patient-derived glioblastoma cells internalized PR_b-functionalized liposomes but not the non-targeted liposomes. The integrin targeting and complexation of the miRNA with PEI were associated with a 22-fold increase in intracellular miR-603 levels, and corresponding decreases in IGF1 and IGF1 receptor (IGF1R) mRNA expression. Moreover, treatment of glioblastoma cells with the PR_b liposomes encapsulating miR-603/PEI sensitized the cells to ionizing radiation (IR), a standard of care treatment for glioblastomas. These results suggest that PR_b-functionalized PEGylated liposomes encapsulating miR-603/PEI complexes hold promise as a therapeutic platform for glioblastomas.

8.
Biotechnol J ; 16(9): e2000641, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34174016

RESUMEN

High throughput process development (HTPD) using liquid handling robotics and RoboColumns is an established methodology in downstream process development to screen chromatography resins and optimize process designs to meet target product profiles. However, HTPD is not yet widely available for use in viral clearance capability of the resin due to a variety of constraints. In the present study, a BSL-1-compatible, non-infectious MVM model, MVM-VLP, was tested for viral clearance assessment with various resin and membrane chromatography operations in a HTPD mode. To detect the MVM-VLP in the high throughput experiments, an electrochemiluminescence immunoassay (ECLIA) assay was developed with up to 5 logs of dynamic range. Storage time suitability of MVM-VLP solutions in various buffer matrices, in the presence or absence of a glycoprotein vaccine candidate, were assessed. Then, MVM-VLP and a test article monoclonal antibody (mAb) were used in a HTPD design that included commercially available ion exchange media chemistries, elucidating a wide variety of viral clearance ability at different operating conditions. The methodologies described herein have the potential to be a part of the process design stage in biologics manufacturing process development, which in turn can reduce risk associated with viral clearance validation studies.


Asunto(s)
Productos Biológicos , Vacunas , Anticuerpos Monoclonales , Cromatografía , Cromatografía por Intercambio Iónico
9.
Vaccine ; 39(25): 3379-3387, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34020817

RESUMEN

Metastable glycosylated immunogens present challenges for GMP manufacturing. The HIV-1 envelope (Env) glycoprotein trimer is covered by N-linked glycan comprising half its mass and requires both trimer assembly and subunit cleavage to fold into a prefusion-closed conformation. This conformation, the vaccine-desired antigenic state, is both metastable to structural rearrangement and labile to subunit dissociation. Prior reported GMP manufacturing for a soluble trimer stabilized in a near-native state by disulfide (SOS) and Ile-to-Pro (IP) mutations has employed affinity methods based on antibody 2G12, which recognizes only ~30% of circulating HIV strains. Here, we develop a scalable manufacturing process based on commercially available, non-affinity resins, and we apply the process to current GMP (cGMP) production of trimers from clades A and C, which have been found to boost cross-clade neutralizing responses in vaccine-test species. The clade A trimer, which we named "BG505 DS-SOSIP.664", contained an engineered disulfide (201C-433C; DS) within gp120, which further stabilized this trimer in a prefusion-closed conformation resistant to CD4-induced triggering. BG505 DS-SOSIP.664 was expressed in a CHO-DG44 stable cell line and purified with initial and final tangential flow filtration steps, three commercially available resin-based chromatography steps, and two orthogonal viral clearance steps. The non-affinity purification enabled efficient scale-up, with a 250 L-scale cGMP run yielding 9.6 g of purified BG505 DS-SOSIP.664. Antigenic analysis indicated retention of a prefusion-closed conformation, including recognition by apex-directed and fusion peptide-directed antibodies. The developed manufacturing process was suitable for 50 L-scale production of a second prefusion-stabilized Env trimer vaccine candidate, ConC-FP8v2 RnS-3mut-2G-SOSIP.664, yielding 7.8 g of this consensus clade C trimer. The successful process development and purification scale-up of HIV-1 Env trimers from different clades by using commercially available materials provide experimental demonstration for cGMP manufacturing of trimeric HIV-Env vaccine immunogens, in an antigenically desired conformation, without the use of costly affinity resins.


Asunto(s)
Vacunas contra el SIDA , VIH-1 , Anticuerpos Neutralizantes , Anticuerpos Anti-VIH , Antígenos VIH , VIH-1/genética , Multimerización de Proteína , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
10.
Bioeng Transl Med ; 6(1): e10194, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33532593

RESUMEN

Despite decades of research, there are few targeted treatment options available for triple negative breast cancer (TNBC), leaving chemotherapy, and radiation treatment regimes with poor response and high toxicity. Herein aptamer-amphiphiles were synthesized which selectively bind to the mucin-1 (MUC1) glycoprotein that is overexpressed in TNBC cells. These amphiphiles have a fluorescent tail (1,8-naphthalimide or 4-nitro-1,8-naphthalimide) which enables self-assembly of the amphiphiles and allows for easy visualization without the requirement for further conjugation of a fluorophore. Interestingly, the length of the alkyl spacer (C4 or C12) between the aptamer and tail was shown to influence the morphology of the self-assembled structure, and thus its ability to internalize into the TNBC cells. While both the MUC1 aptamer-C4-napthalimide spherical micelles and the MUC1 aptamer-C12-napthalimide long cylindrical micelles showed internalization into MDA-MB-468 TNBC cells but not the noncancerous MCF-10A breast cells, the cylindrical micelles showed greatly enhanced internalization into the MDA-MB-468 cells. Similar patterns of enhanced binding and internalization were observed between the MUC1 aptamer-C12-napthalimide cylindrical micelles and SUM159 and MDA-MB-231 TNBC cells. The MUC1 aptamer cylindrical micelles were not toxic to the cells, and when used to deliver doxorubicin to the TNBC cells, were shown to be as cytotoxic as free doxorubicin. Moreover, a pharmacokinetic study in mice showed a prolonged systemic circulation time of the MUC1 aptamer cylindrical micelles. There was a 4.6-fold increase in the elimination half-life of the aptamer cylindrical micelles, and their clearance decreased 10-fold compared to the MUC1 aptamer spherical micelles. Thus, the MUC1 aptamer-C12-napthalimide nanofibers represent a promising vehicle that could be used for easy visualization and targeted delivery of therapeutic loads to TNBC cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...