Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Cell ; 22(3): 832-49, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20215586

RESUMEN

l-Phe, a protein building block and precursor of numerous phenolic compounds, is synthesized from prephenate via an arogenate and/or phenylpyruvate route in which arogenate dehydratase (ADT) or prephenate dehydratase, respectively, plays a key role. Here, we used Petunia hybrida flowers, which are rich in Phe-derived volatiles, to determine the biosynthetic routes involved in Phe formation in planta. Of the three identified petunia ADTs, expression of ADT1 was the highest in petunia petals and positively correlated with endogenous Phe levels throughout flower development. ADT1 showed strict substrate specificity toward arogenate, although with the lowest catalytic efficiency among the three ADTs. ADT1 suppression via RNA interference in petunia petals significantly reduced ADT activity, levels of Phe, and downstream phenylpropanoid/benzenoid volatiles. Unexpectedly, arogenate levels were unaltered, while shikimate and Trp levels were decreased in transgenic petals. Stable isotope labeling experiments showed that ADT1 suppression led to downregulation of carbon flux toward shikimic acid. However, an exogenous supply of shikimate bypassed this negative regulation and resulted in elevated arogenate accumulation. Feeding with shikimate also led to prephenate and phenylpyruvate accumulation and a partial recovery of the reduced Phe level in transgenic petals, suggesting that the phenylpyruvate route can also operate in planta. These results provide genetic evidence that Phe is synthesized predominantly via arogenate in petunia petals and uncover a novel posttranscriptional regulation of the shikimate pathway.


Asunto(s)
Hidroliasas/metabolismo , Petunia/genética , Fenilalanina/biosíntesis , Proteínas de Plantas/metabolismo , Aminoácidos Dicarboxílicos/metabolismo , Ciclohexenos/metabolismo , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Hidroliasas/genética , Petunia/enzimología , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Interferencia de ARN , ARN de Planta/genética , Ácido Shikímico/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo , Compuestos Orgánicos Volátiles/análisis
2.
Plant J ; 59(2): 256-65, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19292760

RESUMEN

Benzoic acid (BA) is an important building block in a wide spectrum of compounds varying from primary metabolites to secondary products. Benzoic acid biosynthesis from L-phenylalanine requires shortening of the propyl side chain by two carbons, which can occur via a beta-oxidative pathway or a non-beta-oxidative pathway, with benzaldehyde as a key intermediate. The non-beta-oxidative route requires benzaldehyde dehydrogenase (BALDH) to convert benzaldehyde to BA. Using a functional genomic approach, we identified an Antirrhinum majus (snapdragon) BALDH, which exhibits 40% identity to bacterial BALDH. Transcript profiling, biochemical characterization of the purified recombinant protein, molecular homology modeling, in vivo stable isotope labeling, and transient expression in petunia flowers reveal that BALDH is capable of oxidizing benzaldehyde to BA in vivo. GFP localization and immunogold labeling studies show that this biochemical step occurs in the mitochondria, raising a question about the role of subcellular compartmentalization in BA biosynthesis.


Asunto(s)
Antirrhinum/enzimología , Benzaldehído-Deshidrogenasa (NADP+)/metabolismo , Ácido Benzoico/metabolismo , Proteínas de Plantas/metabolismo , Antirrhinum/genética , Benzaldehído-Deshidrogenasa (NADP+)/genética , ADN Complementario/genética , Mitocondrias/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Petunia/genética , Petunia/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , ARN de Planta/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Plant Cell ; 18(12): 3458-75, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17194766

RESUMEN

In plants, benzoic acid (BA) is believed to be synthesized from Phe through shortening of the propyl side chain by two carbons. It is hypothesized that this chain shortening occurs via either a beta-oxidative or non-beta-oxidative pathway. Previous in vivo isotope labeling and metabolic flux analysis of the benzenoid network in petunia (Petunia hybrida) flowers revealed that both pathways yield benzenoid compounds and that benzylbenzoate is an intermediate between L-Phe and BA. To test this hypothesis, we generated transgenic petunia plants in which the expression of BPBT, the gene encoding the enzyme that uses benzoyl-CoA and benzyl alcohol to make benzylbenzoate, was reduced or eliminated. Elimination of benzylbenzoate formation decreased the endogenous pool of BA and methylbenzoate emission but increased emission of benzyl alcohol and benzylaldehyde, confirming the contribution of benzylbenzoate to BA formation. Labeling experiments with 2H5-Phe revealed a dilution of isotopic abundance in most measured compounds in the dark, suggesting an alternative pathway from a precursor other than Phe, possibly phenylpyruvate. Suppression of BPBT activity also affected the overall morphology of petunia plants, resulting in larger flowers and leaves, thicker stems, and longer internodes, which was consistent with the increased auxin transport in transgenic plants. This suggests that BPBT is involved in metabolic processes in vegetative tissues as well.


Asunto(s)
Benceno/metabolismo , Ácido Benzoico/metabolismo , Flores/metabolismo , Ácidos Indolacéticos/metabolismo , Petunia/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Benceno/química , Benzoatos/metabolismo , Ácido Benzoico/química , Transporte Biológico/efectos de la radiación , Simulación por Computador , Oscuridad , Flores/enzimología , Flores/efectos de la radiación , Luz , Modelos Biológicos , Datos de Secuencia Molecular , Especificidad de Órganos/efectos de la radiación , Petunia/enzimología , Petunia/genética , Petunia/efectos de la radiación , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/enzimología , Raíces de Plantas/efectos de la radiación , Tallos de la Planta/citología , Tallos de la Planta/enzimología , Tallos de la Planta/efectos de la radiación , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Interferencia de ARN , Plantones/enzimología , Plantones/efectos de la radiación , Volatilización
4.
J Biol Chem ; 281(33): 23357-66, 2006 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-16766535

RESUMEN

We have isolated and characterized Petunia hybrida cv. Mitchell phenylacetaldehyde synthase (PAAS), which catalyzes the formation of phenylacetaldehyde, a constituent of floral scent. PAAS is a cytosolic homotetrameric enzyme that belongs to group II pyridoxal 5'-phosphate-dependent amino-acid decarboxylases and shares extensive amino acid identity (approximately 65%) with plant L-tyrosine/3,4-dihydroxy-L-phenylalanine and L-tryptophan decarboxylases. It displays a strict specificity for phenylalanine with an apparent Km of 1.2 mM. PAAS is a bifunctional enzyme that catalyzes the unprecedented efficient coupling of phenylalanine decarboxylation to oxidation, generating phenylacetaldehyde, CO2, ammonia, and hydrogen peroxide in stoichiometric amounts.


Asunto(s)
Acetaldehído/análogos & derivados , Complejos Multienzimáticos/química , Petunia/enzimología , Fenilalanina/química , Rosa/enzimología , Acetaldehído/química , Acetaldehído/metabolismo , Secuencia de Aminoácidos , Catálisis , Descarboxilación , Datos de Secuencia Molecular , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/aislamiento & purificación , Oxidación-Reducción , Petunia/genética , Fenilalanina/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Rosa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA