Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Nanotechnol ; 18(2): 137-144, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36509921

RESUMEN

Counteracting surface fogging to maintain surface transparency is important for a variety of applications including eyewear, windows and displays. Energy-neutral, passive approaches predominantly rely on engineering the surface wettability, but suffer from non-uniformity, contaminant deposition and lack of robustness, all of which substantially degrade durability and performance. Here, guided by nucleation thermodynamics, we design a transparent, sunlight-activated, photothermal coating to inhibit fogging. The metamaterial coating contains a nanoscopically thin percolating gold layer and is most absorptive in the near-infrared range, where half of the sunlight energy resides, thus maintaining visible transparency. The photoinduced heating effect enables sustained and superior fog prevention (4-fold improvement) and removal (3-fold improvement) compared with uncoated samples, and overall impressive performance, indoors and outdoors, even under cloudy conditions. The extreme thinness (~10 nm) of the coating-which can be produced by standard, readily scalable fabrication processes-enables integration beneath other coatings, rendering it durable even on highly compliant substrates.

2.
ACS Appl Mater Interfaces ; 14(1): 2237-2245, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34974699

RESUMEN

The global challenge of clean water scarcity needs to be confronted with novel sustainable, climate neutral solutions, over the entire spectrum of possible clean water availability. Atmospheric moisture represents a major untapped resource that can be harvested by sorbents, enabling water production in dry inland regions where it is needed. While benefiting from the utilization of an important renewable energy source, solar-driven, sorbent-based atmospheric water harvesting systems are inseparably based on a single water harvesting cycle per day, which severely limits the daily water productivity and the competitiveness of this very promising technology. Here, we rationally design an atmospheric water harvesting strategy, using durable hydrogel sorbents, that operates with sorption "ratcheting"─a large sequence of rapid adsorption and subsequent desorption steps─activated by direct sunlight. Employing theoretical considerations, we tailor the ratcheting timescales to the inherent sorption properties of the hydrogels, optimally exploiting their natural harvesting capabilities, while maintaining the sustainable utility of the daily cycle. Amplified by the favorable sorption properties and ratcheting stability of the sorbent, this strategy demonstrates an impressive ∼80% increase in water harvesting yield over the daily cycle systems. The generic nature of the ratcheting concept shows great potential to advance the water harvesting capabilities of a range of related systems.

3.
Sci Adv ; 7(27)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34215575

RESUMEN

Understanding and controlling the individual behavior of nanoscopic matter in liquids, the environment in which many such entities are functioning, is both inherently challenging and important to many natural and man-made applications. Here, we transport individual nano-objects, from an assembly in a biological ionic solution, through a nanochannel network and confine them in electrokinetic nanovalves, created by the collaborative effect of an applied ac electric field and a rationally engineered nanotopography, locally amplifying this field. The motion of so-confined fluorescent nano-objects is tracked, and its kinetics provides important information, enabling the determination of their particle diffusion coefficient, hydrodynamic radius, and electrical conductivity, which are elucidated for artificial polystyrene nanospheres and subsequently for sub-100-nm conjugated polymer nanoparticles and adenoviruses. The on-chip, individual nano-object resolution method presented here is a powerful approach to aid research and development in broad application areas such as medicine, chemistry, and biology.

4.
Sci Adv ; 7(26)2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34162540

RESUMEN

Atmospheric water vapor is ubiquitous and represents a promising alternative to address global clean water scarcity. Sustainably harvesting this resource requires energy neutrality, continuous production, and facility of use. However, fully passive and uninterrupted 24-hour atmospheric water harvesting remains a challenge. Here, we demonstrate a rationally designed system that synergistically combines radiative shielding and cooling-dissipating the latent heat of condensation radiatively to outer space-with a fully passive superhydrophobic condensate harvester, working with a coalescence-induced water removal mechanism. A rationally designed shield, accounting for the atmospheric radiative heat, facilitates daytime atmospheric water harvesting under solar irradiation at realistic levels of relative humidity. The remarkable cooling power enhancement enables dew mass fluxes up to 50 g m-2 hour-1, close to the ultimate capabilities of such systems. Our results demonstrate that the yield of related technologies can be at least doubled, while cooling and collection remain passive, thereby substantially advancing the state of the art.

5.
ACS Nano ; 14(2): 1783-1791, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32003976

RESUMEN

The ability of mixing colors with remarkable results had long been exclusive to the talents of master painters. By finely combining colors in different amounts on the palette, intuitively, they obtain smooth gradients with any given color. Creating such smooth color variations through scattering by the structural patterning of a surface, as opposed to color pigments, has long remained a challenge. Here, we borrow from the painter's approach and demonstrate color mixing generated by an optical metasurface. We propose a single-layer plasmonic color pixel and a method for nanophotonic structural color mixing based on the additive red-green-blue (RGB) color model. The color pixels consist of plasmonic nanorod arrays that generate vivid primary colors and enable independent control of color brightness without affecting chromaticity by simply varying geometric in-plane parameters. By interleaving different nanorod arrays, we combine up to three primary colors on a single pixel. Based on this, two- and three-color mixing is demonstrated, enabling the continuous coverage of a plasmonic RGB color gamut and yielding a palette with a virtually unlimited number of colors. With this multiresonant color pixel, we show the photorealistic printing of color and monochrome images at the nanoscale, with ultrasmooth transitions in color and brightness. Our color-mixing approach can be applied to a broad range of scatterer designs and materials and has the potential to be used for multiwavelength color filters and dynamic photorealistic displays.

6.
Phys Rev Lett ; 121(2): 023902, 2018 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-30085717

RESUMEN

We optically trap freestanding single metallic chiral nanoparticles using a standing-wave optical tweezer. We also incorporate within the trap a polarimetric setup that allows us to perform in situ chiral recognition of single enantiomers. This is done by measuring the S_{3} component of the Stokes vector of a light beam scattered off the trapped nanoparticle in the forward direction. This unique combination of optical trapping and chiral recognition, all implemented within a single setup, opens new perspectives towards the control, recognition, and manipulation of chiral objects at nanometer scales.

7.
Artículo en Inglés | MEDLINE | ID: mdl-25974466

RESUMEN

We study the reversible crossover between stable and bistable phases of an overdamped Brownian bead inside an optical piston. The interaction potentials are solved developing a method based on Kramers's theory that exploits the statistical properties of the stochastic motion of the bead. We evaluate precisely the energy balance of the crossover. We show that the deformation of the optical potentials induced by the compression of the piston is related to a production of heat balanced between potential energy changes and the total amount of work performed by the piston. This reveals how specific thermodynamic processes can be designed and controlled with a high level of precision by tailoring the optical landscapes of the piston.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...