Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(43): 97700-97711, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37596482

RESUMEN

A field experiment was conducted investigating the possibility of using treated wastewater (TWW) on sites affected by water scarcity in summer, waterlogging during the wet season, and salinity. A corresponding pot experiment was conducted comparable to the field experiment in Kalaât Landelous. The same plant species (Atriplex nummularia Lindl., Eucalyptus gomphocephala DC., Acacia cyanophylla Lindl., Casuarina glauca Sieber ex Spreng., Cupressus sempervirens L., and Pinus halepensis Mill.) were grown with the same treatments. While, in the field the plants, elemental composition cannot be linked to inputs by TWW, this was studied under controlled conditions. Additionally, a control was established lower in salinity receiving tap water. The effect of TWW irrigation on macro- and microelement uptake by the six plant species was studied. The treatments were high soil salinity under drained saline (DS) conditions, high salinity under waterlogged saline (WS), and a drained non-saline control (DNS: EC = 3.0 dS/m, pH = 8.4). TWW application under DS treatment increased Na, Cl, Ca, Mg, N, P, and K in most plant tissues compared to the control. TWW application in WS treatment resulted in an increase in heavy metals. Cu and Zn showed the highest bioaccumulation factor (BAF). The BAF in different plant tissues followed the order: Cu > Zn > Mn > Cd > Ni > Co > Pb. The plants accumulated significant amounts of metals in their roots.


Asunto(s)
Acacia , Atriplex , Metales Pesados , Aguas Residuales , Bioacumulación
2.
J Hazard Mater ; 448: 130992, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36860064

RESUMEN

Evidence on the contribution of root regions with varied maturity levels in iron plaque (IP) formation and root exudation of metabolites and their consequences for uptake and bioavailability of chromium (Cr) remains unknown. Therefore, we applied combined nanoscale secondary ion mass spectrometry (NanoSIMS) and synchrotron-based techniques, micro-X-ray fluorescence (µ-XRF) and micro-X-ray absorption near-edge structure (µ-XANES) to examine the speciation and localisation of Cr and the distribution of (micro-) nutrients in rice root tip and mature region. µ-XRF mapping revealed that the distribution of Cr and (micro-) nutrients varied between root regions. Cr K-edge XANES analysis at Cr hotspots attributed the dominant speciation of Cr in outer (epidermal and sub-epidermal) cell layers of the root tips and mature root to Cr(III)-FA (fulvic acid-like anions) (58-64%) and Cr(III)-Fh (amorphous ferrihydrite) (83-87%) complexes, respectively. The co-occurrence of a high proportion of Cr(III)-FA species and strong co-location signals of 52Cr16O and 13C14N in the mature root epidermis relative to the sub-epidermis indicated an association of Cr with active root surfaces, where the dissolution of IP and release of their associated Cr are likely subject to the mediation of organic anions. The results of NanoSIMS (poor 52Cr16O and 13C14N signals), dissolution (no IP dissolution) and µ-XANES (64% in sub-epidermis >58% in the epidermis for Cr(III)-FA species) analyses of root tips may be indicative of the possible re-uptake of Cr by this region. The results of this research work highlight the significance of IP and organic anions in rice root systems on the bioavailability and dynamics of heavy metals (e.g. Cr).


Asunto(s)
Hierro , Oryza , Cromo , Meristema , Disponibilidad Biológica
3.
Environ Geochem Health ; 45(3): 525-559, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35288837

RESUMEN

The persistent bioavailability of toxic metal(oids) (TM) is undeniably the leading source of serious environmental problems. Through the transfer of these contaminants into food networks, sediments and the aquatic environmental pollution by TM serve as key routes for potential risks to soil and human health. The formation of iron oxyhydroxide plaque (IP) on the root surface of hydrophytes, particularly rice, has been linked to the impact of various abiotic and biotic factors. Radial oxygen loss has been identified as a key driver for the oxidation of rhizosphere ferrous iron (Fe2+) and its subsequent precipitation as low-to-high crystalline and/or amorphous Fe minerals on root surfaces as IP. Considering that each plant species has its unique capability of creating an oxidised rhizosphere under anaerobic conditions, the abundance of rhizosphere Fe2+, functional groups from organic matter decomposition and variations in binding capacities of Fe oxides, thus, impacting the mobility and interaction of several contaminants as well as toxic/non-toxic metals on the specific surface areas of the IP. More insight from wet extraction and advanced synchrotron-based analytical techniques has provided further evidence on how IP formation could significantly affect the fate of plant physiology and biomass production, particularly in contaminated settings. Collectively, this information sets the stage for the possible implementation of IP and related analytical protocols as a strategic framework for the management of rice and other hydrophytes, particularly in contaminated sceneries. Other confounding variables involved in IP formation, as well as operational issues related to some advanced analytical processes, should be considered.


Asunto(s)
Oryza , Contaminantes del Suelo , Humanos , Hierro/análisis , Oryza/química , Cadmio/análisis , Contaminantes del Suelo/análisis , Minerales/metabolismo
4.
Biology (Basel) ; 11(8)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36009829

RESUMEN

This study attempts to determine which of the habitats occupied by Filipendula vulgaris creates better conditions for its growth and development. Selected physiological parameters-PSII activity, chlorophyll content, electrolyte leakage, hydrogen peroxide content as well as biomass, the occurrence of mycorrhiza, and soil characteristics-were investigated. Grassland soils had a higher content of macronutrients and a lower concentration of heavy metals. The degree of colonization of F. vulgaris by AMF (Arum type) oscillated around high values in both types of stands. Plants growing on xerothermic grasslands achieved much better fluorescence parameters than those collected from meadows. Similar results were obtained from the analysis of chlorophyll content. The destabilization degree of cell membranes was significantly higher in plants collected in meadows than in grasslands. Biomass analysis showed higher values of these parameters in grassland plants. In the case of the parameters of fluorescence emission, plants growing on grasslands achieved significantly lower values than plants collected from meadows. The analyses carried out showed that better conditions for growth and physiological activity of F. vulgaris are probably associated with grasslands on a calcareous substrate.

5.
Biology (Basel) ; 11(3)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35336844

RESUMEN

The distribution of arsenic continues due to natural and anthropogenic activities, with varying degrees of impact on plants, animals, and the entire ecosystem. Interactions between iron (Fe) oxides, bacteria, and arsenic are significantly linked to changes in the mobility, toxicity, and availability of arsenic species in aquatic and terrestrial habitats. As a result of these changes, toxic As species become available, posing a range of threats to the entire ecosystem. This review elaborates on arsenic toxicity, the mechanisms of its bioavailability, and selected remediation strategies. The article further describes how the detoxification and methylation mechanisms used by Shewanella species could serve as a potential tool for decreasing phytoavailable As and lessening its contamination in the environment. If taken into account, this approach will provide a globally sustainable and cost-effective strategy for As remediation and more information to the literature on the unique role of this bacterial species in As remediation as opposed to conventional perception of its role as a mobiliser of As.

6.
Biology (Basel) ; 11(2)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35205022

RESUMEN

Plants are exposed to various environmental stresses in their lifespan that threaten their survival. Reactive oxygen species (ROS), the byproducts of aerobic metabolism, are essential signalling molecules in regulating multiple plant developmental processes as well as in reinforcing plant tolerance to biotic and abiotic stimuli. However, intensified environmental challenges such as salinity, drought, UV irradiation, and heavy metals usually interfere with natural ROS metabolism and homeostasis, thus aggravating ROS generation excessively and ultimately resulting in oxidative stress. Cellular damage is confined to the degradation of biomolecular structures, including carbohydrates, proteins, lipids, pigments, and DNA. The nature of the double-edged function of ROS as a secondary messenger or harmful oxidant has been attributed to the degree of existing balance between cellular ROS production and ROS removal machinery. The activities of enzyme-based antioxidants, catalase (CAT, EC 1.11.1.6), monodehydroascorbate reductase (MDHAR, E.C.1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1), superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), glutathione reductase (GR, EC 1.6.4.2), and guaiacol peroxidase (GPX, EC 1.11.1.7); and non-enzyme based antioxidant molecules, ascorbate (AA), glutathione (GSH), carotenoids, α-tocopherol, prolines, flavonoids, and phenolics, are indeed parts of the defensive strategies developed by plants to scavenge excess ROS and to maintain cellular redox homeostasis during oxidative stress. This review briefly summarises current knowledge on enzymatic and non-enzymatic antioxidant machinery in plants. Moreover, additional information about the beneficial impact of the microbiome on countering abiotic/biotic stresses in association with roots and plant tissues has also been provided.

7.
Ecotoxicol Environ Saf ; 208: 111408, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33038728

RESUMEN

The fate of antibiotics and their effects on plant growth may be changed by the application of fertilizers. The present study was carried out to investigate the effect of sulfadiazine (SDZ), rice husk compost (RHC), rice husk biochar (RHB), and mycorrhiza (MR) on the growth attributes of Iranian Echium amoenum Fisch & C.A. Mey. A greenhouse experiment as a completely randomized design with six treatments of bio/organic-fertilizers (no bio-fertilizer (NF), RHB, RHC, MR, RHB+MR, and RHC+MR) and three levels of SDZ application (0, 100, and 200 mg kg-1) was performed for 7months with three replicates. Shoot and root SDZ concentrations were determined using high-pressure liquid chromatography-diode array detection (HPLC-DAD) instrumentation. The results revealed that the application of RHC, RHB, and MR had a significant impact on the reduction of the toxicity effects of SDZ on plant properties. The lowest values of growth parameters belonged to the 200 mg kg-1 of SDZ with no bio-fertilizers, while the highest growth parameters were observed in the treatments of RHB+MR, and RHC+MR with no SDZ application. Also, chlorophyll pigments content was affected by used treatments and the lowest rates of chlorophyll a (4.24), chlorophyll b (2.99), and carotenoids (2.88) were related to the 200 mg kg-1 of SDZ with no biofertilizers application. The co-application of bio-fertilizers and SDZ (at both levels of 100 and 200 mg kg-1) decreased SDZ uptake by both shoot and root in comparison with the control. The same results were obtained with macro (NPK) and micro (Fe, Zn, Cu, and Mn) nutrients uptake by the shoot in which the lowest values of nutrients uptake were observed in treatment of 200 mg kg-1 of SDZ with no bio-fertilizers. Furthermore, in the case of the effect of the used treatments on root colonization, the results showed that the lowest value (7.26%) belonged to the 200 mg kg-1 application of SDZ with no bio-fertilizers. Generally, this study demonstrated that bio-fertilizers could be considered as an effective strategy in controlling the negative effects of antibiotics on the growth properties and nutrients status of the plants grown in such contaminated soils.


Asunto(s)
Echium/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Sulfadiazina/toxicidad , Carbón Orgánico , Clorofila , Clorofila A , Echium/fisiología , Contaminación Ambiental , Fertilizantes , Irán , Oryza/crecimiento & desarrollo , Suelo , Contaminantes del Suelo/análisis
8.
Plants (Basel) ; 9(1)2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31952171

RESUMEN

Antibiotics enter agro-ecosystems via the application of farmyard manure, sewage sludge, animal by-products, or digestates. There are many open questions regarding the behavior of such compounds in the soil like their adsorption, degradation, half-life, and their effects on soil organisms and plants. The impact of antibiotics on the development of antibiotic resistance genes in the environment is regarded as the most important effect that endangers the environment as well as human health. Nevertheless, direct plant toxicity, especially of different antibiotics and heavy metals at the same time, can be of importance as well. In the current study, commercially available phytotoxkits were tested with regard to the toxicity of single antibiotics and antibiotics in combination with the root growth of Sinapis alba L. Additionally, a pot trial was conducted to study the transfer of the observed phytotoxkits results in more complex systems. The phytotoxkits revealed direct toxicity of antibiotics on root development only at high concentrations. The highest toxicity was determined for sulfadiazine, followed by tetracycline and enrofloxacin, showing the least toxicity. When two antibiotics were tested at the same time in the phytotoxkit, synergistic effects were detected. The pot trial indicated lower effect concentrations for enrofloxacin than determined in the phytotoxkit and, therefore, to higher toxicity on plant growth.

9.
Glob Chall ; 3(6): 1800087, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31565379

RESUMEN

The concentration of toxic elements present in surface water of Sutlej River and Harike wetland besides Eichhornia crassipes, commonly known as water hyacinth, is estimated employing inductively coupled plasma mass spectrometry (ICP-MS). Toxic elements such as cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), uranium (U), and zinc (Zn) are identified in the river as well as in Harike wetland catchment. Accumulation of elements in different parts of the water hyacinth plant is observed with the roots exhibiting maximum affinity followed by stem and then leaves. The removal efficacy of pollutants by water hyacinth is estimated using bioconcentration factor (BCF) index. It is found to be different for different elements, with Mn showing the highest and U the lowest magnitude. The study carried out in the present work indicates that rhizofiltration could play an important role in controlling pollutant load.

10.
Environ Sci Pollut Res Int ; 26(28): 28829-28841, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31377927

RESUMEN

Irrigation with treated waste water (TWW) in combination with plantation of agroforest species was tested in the Kalaât Landelous region for the reclamation of salt affected soils. Five species (Atriplex nummularia, Eucalyptus gomphocephala, Acacia cyanophylla, Casuarina glauca, Pinus halepensis) were cultivated in saline soils that are affected by shallow, saline groundwater and were irrigated with TWW during the summer season. The results after 4 years of experimentation show a distinct decrease in soil pH and salinity accompanied by a decrease in Cl and Na concentrations. Irrigation decreased the heavy metal concentrations in the topsoil but an increase in deeper layers indicate to leaching due to TWW irrigation. The investigated plant species were differently affected in growth performance by salinity and TWW irrigation. Atriplex nummularia appeared to be the most resistant species and Pinus halepensis the most sensitive one to hydro-pedological conditions of the Kalaât Landelous plot. In conclusion, salt-tolerant plant species seem to be good candidates for the reclamation of salt-affected, waterlogged sites in combination with TWW irrigation, as the adaptations of such species seem to operate under different abiotic stress conditions.


Asunto(s)
Riego Agrícola/métodos , Atriplex/química , Metales Pesados/análisis , Agua Subterránea , Metales Pesados/química , Salinidad , Plantas Tolerantes a la Sal , Suelo , Túnez , Aguas Residuales , Agua
11.
Sci Total Environ ; 577: 166-173, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-28327292

RESUMEN

Chelates such as ethylenediaminetetraacetic acid (EDTA) enter soils via various sources but their effect on agricultural crops is mostly unknown. Sources of EDTA include industry, households, sewage water and agricultural practices. In a field experiment EDTA was applied in its free form at different rates (0, 150, 550, 1050kgha-1) to study its translocation in the soil profile and to evaluate its effect on yield and mineral composition of the cultivated crop, both in the year of application (oilseed rape) and in the following year (winter wheat). The results indicate that EDTA was translocated from the soil surface to deeper soil layers in the time-frame of the experiment. EDTA was still detectable in the rooting zone 19months after application, indicating its persistence in the soil. Only the highest EDTA rate (1050kgha-1) reduced vegetative growth of oilseed rape until stem elongation, but seed yield was not affected by EDTA application. EDTA application changed the mineral composition of plants. Higher phosphorus (P), sulphur (S), iron (Fe) and manganese (Mn) and lower cadmium (Cd) concentrations were determined in the seeds of oilseed rape. No yield effects of residual EDTA were observed for the following crop, winter wheat, but the Cd content in seeds was still lower in plots where EDTA had been applied in the previous year. Data show that EDTA application affects the mineral uptake of cultivated crops under field conditions.


Asunto(s)
Productos Agrícolas/metabolismo , Ácido Edético/química , Minerales/metabolismo , Suelo/química , Agricultura , Brassica rapa/metabolismo , Contaminantes del Suelo , Triticum/metabolismo
13.
Sci Total Environ ; 542(Pt B): 1013-9, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26328946

RESUMEN

68 rock phosphates and 162 P containing (organo-)mineral fertilizers sold in Germany were evaluated with regard to trace element contents. While Al, As, B, Be, Cd, Cr, Mo, Ni, Pb, Sb, Se, Tl, U, and Zn were higher in sedimentary than in igneous rock phosphates, the opposite was true for Co, Cu, Sn, Mn, Ti, Fe, and Sr. Comparing element concentrations to the currently valid legal limit values defined by the German Fertilizer Ordinance, it was found that some PK and many straight P fertilizers (superphosphate, triple superphosphate, partly acidulated rock phosphates) exceeded the limit of 50 mg Cd/kg P2O5. Mean values for As, Ni, Pb, and Tl remained below legal limits in almost all cases. While no legal limit has been defined for U in Germany yet, the limit of 50 mg U/kg P2O5 for P containing fertilizers proposed by the German Commission for the Protection of Soils was clearly exceeded by mean values for all fertilizer types analyzed. A large share of the samples evaluated in this work contained essential trace elements at high concentrations, with many of them not being declared as such. Furthermore, trace elements supplied with these fertilizers at a fertilization rate leveling P uptake would exceed trace element uptake by crops. This may become most relevant for B and Fe, since many crops are sensitive to an oversupply of B, and Fe loads exceeding plant uptake may immobilize P supplies for the crops by forming Fe phosphate salts. The sample set included two products made from thermochemically treated sewage sludge ash. The products displayed very high concentrations of Fe and Mn and exceeded the legal limit for Ni, emphasizing the necessity to continue research on heavy metal removal from recycled raw materials and the development of environmentally friendly and agriculturally efficient fertilizer products.

14.
Ecotoxicol Environ Saf ; 122: 136-44, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26232040

RESUMEN

Rare earth elements such as lanthanum (La) have been used as agricultural inputs in some countries in order to enhance yield and improve crop quality. However, little is known about the effect of La on the growth and structure of soybean, which is an important food and feed crop worldwide. In this study, bioaccumulation of La and its effects on the growth and mitotic index of soybean was evaluated. Soybean plants were exposed to increasing concentrations of La (0, 5, 10, 20, 40, 80, and 160 µM) in nutrient solution for 28 days. Plant response to La was evaluated in terms of plant growth, nutritional characteristics, photosynthetic rate, chlorophyll content, mitotic index, modifications in the ultrastructure of roots and leaves, and La mapping in root and shoot tissues. The results showed that the roots of soybean plants can accumulate sixty-fold more La than shoots. La deposition occurred mainly in cell walls and in crystals dispersed in the root cortex and in the mesophyll. When La was applied, it resulted in increased contents of some essential nutrients (i.e., Ca, P, K, and Mn), while Cu and Fe levels decreased. Moreover, low La concentrations stimulated the photosynthetic rate and total chlorophyll content and lead to a higher incidence of binucleate cells, resulting in a slight increase in roots and shoot biomass. At higher La levels, soybean growth was reduced. This was caused by ultrastructural modifications in the cell wall, thylakoids and chloroplasts, and the appearance of c-metaphases.


Asunto(s)
Glycine max/efectos de los fármacos , Lantano/farmacología , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Pared Celular/ultraestructura , Clorofila/metabolismo , Cloroplastos/efectos de los fármacos , Cloroplastos/ultraestructura , Índice Mitótico , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/ultraestructura , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/ultraestructura , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Glycine max/crecimiento & desarrollo , Glycine max/metabolismo , Glycine max/ultraestructura
15.
Sci Total Environ ; 478: 226-34, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24556272

RESUMEN

This study seeks to identify and specify the components that make up the prospects of U recovery from phosphate rock. A systems approach is taken. The assessment includes i) reviewing past recovery experience and lessons learned; ii) identifying factors that determine recovery; and iii) establishing a contemporary evaluation of U endowments in phosphate rock reserves, as well as the available and recoverable amounts from phosphate rock and phosphoric acid production. We find that in the past, recovery did not fulfill its potential and that the breakup of the Soviet Union worsened then-favorable recovery market conditions in the 1990s. We find that an estimated 5.7 million tU may be recoverable from phosphate rock reserves. In 2010, the recoverable tU from phosphate rock and phosphoric acid production may have been 15,000 tU and 11,000 tU, respectively. This could have filled the world U supply-demand gap for nuclear energy production. The results suggest that the U.S., Morocco, Tunisia, and Russia would be particularly well-suited to recover U, taking infrastructural considerations into account. We demonstrate future research needs, as well as sustainability orientations. We conclude that in order to promote investment and production, it seems necessary to establish long-term contracts at guaranteed prices, ensuring profitability for phosphoric acid producers.

16.
Front Plant Sci ; 5: 779, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25642233

RESUMEN

Until the 1970's of the last century sulfur (S) was mainly regarded as a pollutant being the main contributor of acid rain, causing forest dieback in central Europe. When Clean Air Acts came into force at the start of the 1980's SO2 contaminations in the air were consequently reduced within the next years. S changed from an unwanted pollutant into a lacking plant nutrient in agriculture since agricultural fields were no longer "fertilized" indirectly by industrial pollution. S deficiency was first noticed in Brassica crops that display an especially high S demand because of its content of S-containing secondary metabolites, the glucosinolates. In Scotland, where S depositions decreased even faster than in continental Europe, an increasing disease incidence with Pyrenopeziza brassicae was observed in oilseed rape in the beginning 1990's and the concept of sulfur-induced-resistance (SIR) was developed after a relationship between the S status and the disease incidence was uncovered. Since then a lot of research was carried out to unravel the background of SIR in the metabolism of agricultural crops and to identify metabolites, enzymes and reactions, which are potentially activated by the S metabolism to combat fungal pathogens. The S status of the crop is affecting many different plant features such as color and scent of flowers, pigments in leaves, metabolite concentrations and the release of gaseous S compounds which are directly influencing the desirability of a crop for a variety of different organisms from microorganisms, over insects and slugs to the point of grazing animals. The present paper is an attempt to sum up the knowledge about the effect of the S nutritional status of agricultural crops on parameters that are directly related to their health status and by this to SIR. Milestones in SIR research are compiled, open questions are addressed and future projections were developed.

18.
J Agric Food Chem ; 60(31): 7588-96, 2012 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-22812725

RESUMEN

The emission of gaseous sulfur (S) compounds by plants is related to several factors, such as the plant S status or fungal infection. Hydrogen sulfide (H(2)S) is either released or taken up by the plant depending on the ambient air concentration and the plant demand for S. On the contrary, carbonyl sulfide (COS) is normally taken up by plants. In a greenhouse experiment, the dependence of H(2)S and COS exchange with ambient air on the S status of oilseed rape (Brassica napus L.) and on fungal infection with Sclerotinia sclerotiorum was investigated. Thiol contents were determined to understand their influence on the exchange of gaseous S compounds. The experiment revealed that H(2)S emissions were closely related to pathogen infections as well as to S nutrition. S fertilization caused a change from H(2)S consumption by S-deficient oilseed rape plants to a H(2)S release of 41 pg g(-1) (dw) min(-1) after the addition of 250 mg of S per pot. Fungal infection caused an even stronger increase of H(2)S emissions with a maximum of 1842 pg g(-1) (dw) min(-1) 2 days after infection. Healthy oilseed rape plants acted as a sink for COS. Fungal infection caused a shift from COS uptake to COS releases. The release of S-containing gases thus seems to be part of the response to fungal infection. The roles the S-containing gases may play in this response are discussed.


Asunto(s)
Ascomicetos/fisiología , Brassica napus/metabolismo , Brassica napus/microbiología , Productos Agrícolas/metabolismo , Productos Agrícolas/microbiología , Fertilizantes/análisis , Sulfuro de Hidrógeno/metabolismo , Enfermedades de las Plantas/microbiología , Óxidos de Azufre/metabolismo , Productos Agrícolas/química , Sulfuro de Hidrógeno/análisis , Óxidos de Azufre/análisis
19.
J Plant Physiol ; 169(7): 740-3, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22342657

RESUMEN

The antifungal activities of many sulfur-containing defense compounds suggest a connection between pathogen infection, primary sulfur metabolism and sulfate nutritional status of plants. This relationship was investigated using Arabidopsis thaliana plants that were cultivated under different sulfur regimes and challenged by Alternaria brassicicola. Plants grown with 500 µM sulfate were significantly less infected compared to plants grown on 50 µM sulfate. Upon infection, the formation of the sulfur-containing defense compound camalexin and the gene expression of the sulfur-rich defense peptide defensin were clearly enhanced in plants grown with an optimal compared to a sufficient sulfate supply in the growth medium. Elevated levels of sulfite and O-acetylserine and cysteine biosynthetic enzymes after infection indicated a stimulation of sulfur metabolism under the higher sulfate supply. The results suggest that, in addition to pathogen-triggered activation of sulfur metabolism and sulfur-containing defense compound formation, the sulfate nutritional status is sensed to contribute to plant defense.


Asunto(s)
Antiinfecciosos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Sulfatos/farmacología , Azufre/metabolismo , Alternaria/inmunología , Alternaria/fisiología , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , ADN de Hongos/genética , Defensinas/genética , Defensinas/metabolismo , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Glutatión/metabolismo , Interacciones Huésped-Patógeno , Indoles/metabolismo , Fenotipo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , ARN de Planta/genética , Sulfatos/metabolismo , Compuestos de Azufre/metabolismo , Tiazoles/metabolismo
20.
Sci Total Environ ; 409(18): 3512-9, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21696804

RESUMEN

There is a rising need for scientifically sound and quantitative as well as simple, rapid, cheap and readily available soil testing procedures. The purpose of this study was to explore selected soft drinks (Coca-Cola Classic®, Diet Coke®, Coke Zero®) as indicators of bioaccessible uranium and other trace elements (As, Ce, Cu, La, Mn, Ni, Pb, Th, Y, Zn) in contaminated soils of the Mary Kathleen uranium mine site, Australia. Data of single extraction tests using Coca-Cola Classic®, Diet Coke® and Coke Zero® demonstrate that extractable arsenic, copper, lanthanum, manganese, nickel, yttrium and zinc concentrations correlate significantly with DTPA- and CaCl2-extractable metals. Moreover, the correlation between DTPA-extractable uranium and that extracted using Coca-Cola Classic® is close to unity (+0.98), with reduced correlations for Diet Coke® (+0.66) and Coke Zero® (+0.55). Also, Coca-Cola Classic® extracts uranium concentrations near identical to DTPA, whereas distinctly higher uranium fractions were extracted using Diet Coke® and Coke Zero®. Results of this study demonstrate that the use of Coca-Cola Classic® in single extraction tests provided an excellent indication of bioaccessible uranium in the analysed soils and of uranium uptake into leaves and stems of the Sodom apple (Calotropis procera). Moreover, the unconventional reagent is superior in terms of availability, costs, preparation and disposal compared to traditional chemicals. Contaminated site assessments and rehabilitation of uranium mine sites require a solid understanding of the chemical speciation of environmentally significant elements for estimating their translocation in soils and plant uptake. Therefore, Cola soft drinks have potential applications in single extraction tests of uranium contaminated soils and may be used for environmental impact assessments of uranium mine sites, nuclear fuel processing plants and waste storage and disposal facilities.


Asunto(s)
Bebidas Gaseosas , Monitoreo del Ambiente/métodos , Contaminantes Radiactivos del Suelo/química , Suelo/química , Uranio/química , Quelantes/química , Fraccionamiento Químico/métodos , Minería , Ácido Pentético/química , Contaminantes Radiactivos del Suelo/análisis , Uranio/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...