Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Eur J Hum Genet ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467731

RESUMEN

Biallelic pathogenic variants in CDC45 are associated with Meier-Gorlin syndrome with craniosynostosis (MGORS type 7), which also includes short stature and absent/hypoplastic patellae. Identified variants act through a hypomorphic loss of function mechanism, to reduce CDC45 activity and impact DNA replication initiation. In addition to missense and premature termination variants, several pathogenic synonymous variants have been identified, most of which cause increased exon skipping of exon 4, which encodes an essential part of the RecJ-orthologue's DHH domain. Here we have identified a second cohort of families segregating CDC45 variants, where patients have craniosynostosis and a reduction in height, alongside common facial dysmorphisms, including thin eyebrows, consistent with MGORS7. Skipping of exon 15 is a consequence of two different variants, including a shared synonymous variant that is enriched in individuals of East Asian ancestry, while other variants in trans are predicted to alter key intramolecular interactions in α/ß domain II, or cause retention of an intron within the 3'UTR. Our cohort and functional data confirm exon skipping is a relatively common pathogenic mechanism in CDC45, and highlights the need for alternative splicing events, such as exon skipping, to be especially considered for variants initially predicted to be less likely to cause the phenotype, particularly synonymous variants.

2.
Clin Genet ; 105(1): 62-71, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37853563

RESUMEN

Genomic medicine has been transformed by next-generation sequencing (NGS), inclusive of exome sequencing (ES) and genome sequencing (GS). Currently, ES is offered widely in clinical settings, with a less prevalent alternative model consisting of hybrid programs that incorporate research ES along with clinical patient workflows. We were among the earliest to implement a hybrid ES clinic, have provided diagnoses to 45% of probands, and have identified several novel candidate genes. Our program is enabled by a cost-effective investment by the health system and is unique in encompassing all the processes that have been variably included in other hybrid/clinical programs. These include careful patient selection, utilization of a phenotype-agnostic bioinformatics pipeline followed by manual curation of variants and phenotype integration by clinicians, close collaborations between the clinicians and the bioinformatician, pursuit of interesting variants, communication of results to patients in categories that are predicated upon the certainty of a diagnosis, and tracking changes in results over time and the underlying mechanisms for such changes. Due to its effectiveness, scalability to GS and its resource efficiency, specific elements of our paradigm can be incorporated into existing clinical settings, or the entire hybrid model can be implemented within health systems that have genomic medicine programs, to provide NGS in a scientifically rigorous, yet pragmatic setting.


Asunto(s)
Biología Computacional , Exoma , Humanos , Exoma/genética , Fenotipo , Secuenciación del Exoma , Secuenciación de Nucleótidos de Alto Rendimiento
3.
Orphanet J Rare Dis ; 18(1): 269, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37667351

RESUMEN

BACKGROUND: A recurrent de novo variant (c.892C>T) in NACC1 causes a neurodevelopmental disorder with epilepsy, cataracts, feeding difficulties, and delayed brain myelination (NECFM). An unusual and consistently reported feature is episodic extreme irritability and inconsolability. We now characterize these episodes, their impact on the family, and ascertain treatments that may be effective. Parents of 14 affected individuals provided narratives describing the irritability episodes, including triggers, behavioral and physiological changes, and treatments. Simultaneously, parents of 15 children completed the Non-communicating Children's Pain Checklist-Revised (NCCPC-R), a measure to assess pain in non-verbal children. RESULTS: The episodes of extreme irritability include a prodromal, peak, and resolving phase, with normal periods in between. The children were rated to have extreme pain-related behaviors on the NCCPC-R scale, although it is unknown whether the physiologic changes described by parents are caused by pain. Attempted treatments included various classes of medications, with psychotropic and sedative medications being most effective (7/15). Nearly all families (13/14) describe how the episodes have a profound impact on their lives. CONCLUSIONS: NECFM caused by the recurrent variant c.892C>T is associated with a universal feature of incapacitating episodic irritability of unclear etiology. Further understanding of the pathophysiology can lead to more effective therapeutic strategies.


Asunto(s)
Encéfalo , Catarata , Niño , Humanos , Hipnóticos y Sedantes , Dolor/genética , Padres , Enfermedades Raras , Proteínas de Neoplasias , Proteínas Represoras
4.
NPJ Genom Med ; 8(1): 17, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37463940

RESUMEN

Congenital heart disease (CHD) affecting the conotruncal region of the heart, occurs in 40-50% of patients with 22q11.2 deletion syndrome (22q11.2DS). This syndrome is a rare disorder with relative genetic homogeneity that can facilitate identification of genetic modifiers. Haploinsufficiency of TBX1, encoding a T-box transcription factor, is one of the main genes responsible for the etiology of the syndrome. We suggest that genetic modifiers of conotruncal defects in patients with 22q11.2DS may be in the TBX1 gene network. To identify genetic modifiers, we analyzed rare, predicted damaging variants in whole genome sequence of 456 cases with conotruncal defects and 537 controls, with 22q11.2DS. We then performed gene set approaches and identified chromatin regulatory genes as modifiers. Chromatin genes with recurrent damaging variants include EP400, KAT6A, KMT2C, KMT2D, NSD1, CHD7 and PHF21A. In total, we identified 37 chromatin regulatory genes, that may increase risk for conotruncal heart defects in 8.5% of 22q11.2DS cases. Many of these genes were identified as risk factors for sporadic CHD in the general population. These genes are co-expressed in cardiac progenitor cells with TBX1, suggesting that they may be in the same genetic network. The genes KAT6A, KMT2C, CHD7 and EZH2, have been previously shown to genetically interact with TBX1 in mouse models. Our findings indicate that disturbance of chromatin regulatory genes impact the TBX1 gene network serving as genetic modifiers of 22q11.2DS and sporadic CHD, suggesting that there are some shared mechanisms involving the TBX1 gene network in the etiology of CHD.

5.
Genet Med ; 25(9): 100897, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37191094

RESUMEN

PURPOSE: Mendelian etiologies for acute encephalopathies in previously healthy children are poorly understood, with the exception of RAN binding protein 2 (RANBP2)-associated acute necrotizing encephalopathy subtype 1 (ANE1). We provide clinical, genetic, and neuroradiological evidence that biallelic variants in ribonuclease inhibitor (RNH1) confer susceptibility to a distinctive ANE subtype. METHODS: This study aimed to evaluate clinical data, neuroradiological studies, genomic sequencing, and protein immunoblotting results in 8 children from 4 families who experienced acute febrile encephalopathy. RESULTS: All 8 healthy children became acutely encephalopathic during a viral/febrile illness and received a variety of immune modulation treatments. Long-term outcomes varied from death to severe neurologic deficits to normal outcomes. The neuroradiological findings overlapped with ANE but had distinguishing features. All affected children had biallelic predicted damaging variants in RNH1: a subset that was studied had undetectable RNH1 protein. Incomplete penetrance of the RNH1 variants was evident in 1 family. CONCLUSION: Biallelic variants in RNH1 confer susceptibility to a subtype of ANE (ANE2) in previously healthy children. Intensive immunological treatments may alter outcomes. Genomic sequencing in children with unexplained acute febrile encephalopathy can detect underlying genetic etiologies, such as RNH1, and improve outcomes in the probands and at-risk siblings.


Asunto(s)
Encefalopatía Aguda Febril , Encefalopatías , Leucoencefalitis Hemorrágica Aguda , Niño , Humanos , Leucoencefalitis Hemorrágica Aguda/diagnóstico , Leucoencefalitis Hemorrágica Aguda/genética , Inflamasomas , Encefalopatías/genética , Factores de Transcripción , Ribonucleasas , Proteínas Portadoras
6.
J Genet Couns ; 32(5): 993-1008, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37005744

RESUMEN

Although genomic research offering next-generation sequencing (NGS) has increased the diagnoses of rare/ultra-rare disorders, populations experiencing health disparities infrequently participate in these studies. The factors underlying non-participation would most reliably be ascertained from individuals who have had the opportunity to participate, but decline. We thus enrolled parents of children and adult probands with undiagnosed disorders who had declined genomic research offering NGS with return of results with undiagnosed disorders (Decliners, n = 21) and compared their data to those who participated (Participants, n = 31). We assessed: (1) practical barriers and facilitators, (2) sociocultural factors-genomic knowledge and distrust, and (3) the value placed upon a diagnosis by those who declined participation. The primary findings were that residence in rural and medically underserved areas (MUA) and higher number of barriers were significantly associated with declining participation in the study. Exploratory analyses revealed multiple co-occurring practical barriers, greater emotional exhaustion and research hesitancy in the parents in the Decliner group compared to the Participants, with both groups identifying a similar number of facilitators. The parents in the Decliner group also had lower genomic knowledge, but distrust of clinical research was not different between the groups. Importantly, despite their non-participation, those in the Decliner group indicated an interest in obtaining a diagnosis and expressed confidence in being able to emotionally manage the ensuing results. Study findings support the concept that some families who decline participation in diagnostic genomic research may be experiencing pile-up with exhaustion of family resources - making participation in the genomic research difficult. This study highlights the complexity of the factors that underlie non-participation in clinically relevant NGS research. Thus, approaches to mitigating barriers to NGS research participation by populations experiencing health disparities need to be multi-pronged and tailored so that they can benefit from state-of -the art genomic technologies.


Asunto(s)
Genómica , Padres , Adulto , Niño , Humanos , Padres/psicología
7.
Annu Rev Med ; 74: 489-502, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36706750

RESUMEN

Exome sequencing (ES) and genome sequencing (GS) have radically transformed the diagnostic approach to undiagnosed rare/ultrarare Mendelian diseases. Next-generation sequencing (NGS), the technology integral for ES, GS, and most large (100+) gene panels, has enabled previously unimaginable diagnoses, changes in medical management, new treatments, and accurate reproductive risk assessments for patients, as well as new disease gene discoveries. Yet, challenges remain, as most individuals remain undiagnosed with current NGS. Improved NGS technology has resulted in long-read sequencing, which may resolve diagnoses in some patients who do not obtain a diagnosis with current short-read ES and GS, but its effectiveness is unclear, and it is expensive. Other challenges that persist include the resolution of variants of uncertain significance, the urgent need for patients with ultrarare disorders to have access to therapeutics, the need for equity in patient access to NGS-based testing, and the study of ethical concerns. However, the outlook for undiagnosed disease resolution is bright, due to continual advancements in the field.


Asunto(s)
Exoma , Enfermedades Raras , Humanos , Secuenciación del Exoma , Exoma/genética , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Pruebas Genéticas/métodos
8.
Genet Med ; 25(4): 100353, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36481303

RESUMEN

PURPOSE: Next-generation sequencing (NGS) has revolutionized the diagnostic process for rare/ultrarare conditions. However, diagnosis rates differ between analytical pipelines. In the National Institutes of Health-Undiagnosed Diseases Network (UDN) study, each individual's NGS data are concurrently analyzed by the UDN sequencing core laboratory and the clinical sites. We examined the outcomes of this practice. METHODS: A retrospective review was performed at 2 UDN clinical sites to compare the variants and diagnoses/candidate genes identified with the dual analyses of the NGS data. RESULTS: In total, 95 individuals had 100 diagnoses/candidate genes. There was 59% concordance between the UDN sequencing core laboratories and the clinical sites in identifying diagnoses/candidate genes. The core laboratory provided more diagnoses, whereas the clinical sites prioritized more research variants/candidate genes (P < .001). The clinical sites solely identified 15% of the diagnoses/candidate genes. The differences between the 2 pipelines were more often because of variant prioritization disparities than variant detection. CONCLUSION: The unique dual analysis of NGS data in the UDN synergistically enhances outcomes. The core laboratory provided a clinical analysis with more diagnoses and the clinical sites prioritized more research variants/candidate genes. Implementing such concurrent dual analyses in other genomic research studies and clinical settings can improve both variant detection and prioritization.


Asunto(s)
Enfermedades no Diagnosticadas , Estados Unidos/epidemiología , Humanos , Genómica , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Laboratorios
9.
Hum Mutat ; 43(12): 1816-1823, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36317458

RESUMEN

Advanced bioinformatics algorithms allow detection of multiple-exon copy-number variations (CNVs) from exome sequencing (ES) data, while detection of single-exon CNVs remains challenging. A retrospective review of Baylor Genetics' clinical ES patient cohort identified four individuals with homozygous single-exon deletions of TBCK (exon 23, NM_001163435.2), a gene associated with an autosomal recessive neurodevelopmental phenotype. To evaluate the prevalence of this deletion and its contribution to disease, we retrospectively analyzed single nucleotide polymorphism (SNP) array data for 8194 individuals undergoing ES, followed by PCR confirmation and RT-PCR on individuals carrying homozygous or heterozygous exon 23 TBCK deletions. A fifth individual was diagnosed with the TBCK-related disorder due to a heterozygous exon 23 deletion in trans with a c.1860+1G>A (NM_001163435.2) pathogenic variant, and three additional heterozygous carriers were identified. Affected individuals and carriers were from diverse ethnicities including European Caucasian, South Asian, Middle Eastern, Hispanic American and African American, with only one family reporting consanguinity. RT-PCR revealed two out-of-frame transcripts related to the exon 23 deletion. Our results highlight the importance of identifying single-exon deletions in clinical ES, especially for genes carrying recurrent deletions. For patients with early-onset hypotonia and psychomotor delay, this single-exon TBCK deletion might be under-recognized due to technical limitations of ES.


Asunto(s)
Hipotonía Muscular , Enfermedades Musculares , Proteínas Serina-Treonina Quinasas , Humanos , Variaciones en el Número de Copia de ADN , Exoma , Secuenciación del Exoma , Exones/genética , Hipotonía Muscular/genética , Enfermedades Musculares/genética , Proteínas Serina-Treonina Quinasas/genética , Estudios Retrospectivos , Lactante
10.
Hum Mol Genet ; 31(17): 2934-2950, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35405010

RESUMEN

DROSHA encodes a ribonuclease that is a subunit of the Microprocessor complex and is involved in the first step of microRNA (miRNA) biogenesis. To date, DROSHA has not yet been associated with a Mendelian disease. Here, we describe two individuals with profound intellectual disability, epilepsy, white matter atrophy, microcephaly and dysmorphic features, who carry damaging de novo heterozygous variants in DROSHA. DROSHA is constrained for missense variants and moderately intolerant to loss-of-function (o/e = 0.24). The loss of the fruit fly ortholog drosha causes developmental arrest and death in third instar larvae, a severe reduction in brain size and loss of imaginal discs in the larva. Loss of drosha in eye clones causes small and rough eyes in adult flies. One of the identified DROSHA variants (p.Asp1219Gly) behaves as a strong loss-of-function allele in flies, while another variant (p.Arg1342Trp) is less damaging in our assays. In worms, a knock-in that mimics the p.Asp1219Gly variant at a worm equivalent residue causes loss of miRNA expression and heterochronicity, a phenotype characteristic of the loss of miRNA. Together, our data show that the DROSHA variants found in the individuals presented here are damaging based on functional studies in model organisms and likely underlie the severe phenotype involving the nervous system.


Asunto(s)
Epilepsia , Discapacidad Intelectual , MicroARNs , Microcefalia , Malformaciones del Sistema Nervioso , Humanos , Discapacidad Intelectual/genética , MicroARNs/genética , MicroARNs/metabolismo , Microcefalia/genética , Ribonucleasa III/genética , Ribonucleasa III/metabolismo
11.
Am J Hum Genet ; 109(2): 361-372, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35051358

RESUMEN

Nuclear deubiquitinase BAP1 (BRCA1-associated protein 1) is a core component of multiprotein complexes that promote transcription by reversing the ubiquitination of histone 2A (H2A). BAP1 is a tumor suppressor whose germline loss-of-function variants predispose to cancer. To our knowledge, there are very rare examples of different germline variants in the same gene causing either a neurodevelopmental disorder (NDD) or a tumor predisposition syndrome. Here, we report a series of 11 de novo germline heterozygous missense BAP1 variants associated with a rare syndromic NDD. Functional analysis showed that most of the variants cannot rescue the consequences of BAP1 inactivation, suggesting a loss-of-function mechanism. In T cells isolated from two affected children, H2A deubiquitination was impaired. In matching peripheral blood mononuclear cells, histone H3 K27 acetylation ChIP-seq indicated that these BAP1 variants induced genome-wide chromatin state alterations, with enrichment for regulatory regions surrounding genes of the ubiquitin-proteasome system (UPS). Altogether, these results define a clinical syndrome caused by rare germline missense BAP1 variants that alter chromatin remodeling through abnormal histone ubiquitination and lead to transcriptional dysregulation of developmental genes.


Asunto(s)
Proteína BRCA1/genética , Mutación de Línea Germinal , Mutación con Pérdida de Función , Mutación Missense , Trastornos del Neurodesarrollo/genética , Proteínas Supresoras de Tumor/genética , Ubiquitina Tiolesterasa/genética , Adolescente , Proteína BRCA1/inmunología , Niño , Preescolar , Cromatina/química , Cromatina/inmunología , Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/inmunología , Familia , Femenino , Regulación de la Expresión Génica , Heterocigoto , Histonas/genética , Histonas/inmunología , Factor C1 de la Célula Huésped/genética , Factor C1 de la Célula Huésped/inmunología , Humanos , Lactante , Masculino , Trastornos del Neurodesarrollo/inmunología , Trastornos del Neurodesarrollo/patología , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/inmunología , Linfocitos T/inmunología , Linfocitos T/patología , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/inmunología , Ubiquitina/genética , Ubiquitina/inmunología , Ubiquitina Tiolesterasa/deficiencia , Ubiquitina Tiolesterasa/inmunología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/inmunología , Ubiquitinación
12.
J Genet Couns ; 31(1): 59-70, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34115423

RESUMEN

The Genome Empowerment Scale (GEmS), developed as a research tool, assesses perspectives of parents of children with undiagnosed disorders about to undergo exome or genome sequencing related to the process of empowerment. We defined genomic healthcare empowerment as follows: perceived ability to understand and seek new information related to the genomic sequencing, manage emotions related to the diagnostic process and outcomes, and utilize genomic sequencing information to the betterment of the individual/child and family. The GEmS consists of four scales, two are primarily emotion-focused (Meaning of a Diagnosis, and Emotional Management of the Process) and two are action-oriented (Seeking Information and Support, and Implications and Planning). The purpose of this research was to provide a strategy for interpreting results from the GEmS and present illustrative cases. These illustrations should serve to facilitate use of the GEmS in the clinical and research arena, particularly with respect to guiding genetic counseling processes for parents of children with undiagnosed conditions.


Asunto(s)
Genómica , Padres , Niño , Atención a la Salud , Familia , Humanos , Padres/psicología , Secuenciación del Exoma
13.
Am J Med Genet A ; 185(8): 2417-2433, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34042254

RESUMEN

Biallelic loss-of-function variants in the thrombospondin-type laminin G domain and epilepsy-associated repeats (TSPEAR) gene have recently been associated with ectodermal dysplasia and hearing loss. The first reports describing a TSPEAR disease association identified this gene is a cause of nonsyndromic hearing loss, but subsequent reports involving additional affected families have questioned this evidence and suggested a stronger association with ectodermal dysplasia. To clarify genotype-phenotype associations for TSPEAR variants, we characterized 13 individuals with biallelic TSPEAR variants. Individuals underwent either exome sequencing or panel-based genetic testing. Nearly all of these newly reported individuals (11/13) have phenotypes that include tooth agenesis or ectodermal dysplasia, while three newly reported individuals have hearing loss. Of the individuals displaying hearing loss, all have additional variants in other hearing-loss-associated genes, specifically TMPRSS3, GJB2, and GJB6, that present competing candidates for their hearing loss phenotype. When presented alongside previous reports, the overall evidence supports the association of TSPEAR variants with ectodermal dysplasia and tooth agenesis features but creates significant doubt as to whether TSPEAR variants are a monogenic cause of hearing loss. Further functional evidence is needed to evaluate this phenotypic association.


Asunto(s)
Anodoncia/diagnóstico , Anodoncia/genética , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Variación Genética , Fenotipo , Proteínas/genética , Alelos , Sustitución de Aminoácidos , Estudios de Cohortes , Femenino , Estudios de Asociación Genética , Sitios Genéticos , Humanos , Masculino , Mutación , Linaje , Radiografía
14.
Hum Mol Genet ; 30(14): 1283-1292, 2021 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-33864376

RESUMEN

The Polycomb group (PcG) gene RNF2 (RING2) encodes a catalytic subunit of the Polycomb repressive complex 1 (PRC1), an evolutionarily conserved machinery that post-translationally modifies chromatin to maintain epigenetic transcriptional repressive states of target genes including Hox genes. Here, we describe two individuals, each with rare de novo missense variants in RNF2. Their phenotypes include intrauterine growth retardation, severe intellectual disabilities, behavioral problems, seizures, feeding difficulties and dysmorphic features. Population genomics data suggest that RNF2 is highly constrained for loss-of-function (LoF) and missense variants, and both p.R70H and p.S82R variants have not been reported to date. Structural analyses of the two alleles indicate that these changes likely impact the interaction between RNF2 and BMI1, another PRC1 subunit or its substrate Histone H2A, respectively. Finally, we provide functional data in Drosophila that these two missense variants behave as LoF alleles in vivo. The evidence provide support for deleterious alleles in RNF2 being associated with a new and recognizable genetic disorder. This tentative gene-disease association in addition to the 12 previously identified disorders caused by PcG genes attests to the importance of these chromatin regulators in Mendelian disorders.


Asunto(s)
Trastornos del Neurodesarrollo , Complejo Represivo Polycomb 1 , Genes Homeobox , Histonas/genética , Humanos , Trastornos del Neurodesarrollo/genética , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Proteínas del Grupo Polycomb/genética
15.
Eur J Hum Genet ; 29(2): 271-279, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32901138

RESUMEN

Trafficking protein particle (TRAPP) complexes, which include the TRAPPC4 protein, regulate membrane trafficking between lipid organelles in a process termed vesicular tethering. TRAPPC4 was recently implicated in a recessive neurodevelopmental condition in four unrelated families due to a shared c.454+3A>G splice variant. Here, we report 23 patients from 17 independent families with an early-infantile-onset neurodegenerative presentation, where we also identified the homozygous variant hg38:11:119020256 A>G (NM_016146.5:c.454+3A>G) in TRAPPC4 through exome or genome sequencing. No other clinically relevant TRAPPC4 variants were identified among any of over 10,000 patients with neurodevelopmental conditions. We found the carrier frequency of TRAPPC4 c.454+3A>G was 2.4-5.4 per 10,000 healthy individuals. Affected individuals with the homozygous TRAPPC4 c.454+3A>G variant showed profound psychomotor delay, developmental regression, early-onset epilepsy, microcephaly and progressive spastic tetraplegia. Based upon RNA sequencing, the variant resulted in partial exon 3 skipping and generation of an aberrant transcript owing to use of a downstream cryptic splice donor site, predicting a premature stop codon and nonsense mediated decay. These data confirm the pathogenicity of the TRAPPC4 c.454+3A>G variant, and refine the clinical presentation of TRAPPC4-related encephalopathy.


Asunto(s)
Homocigoto , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/genética , Empalme del ARN , Proteínas de Transporte Vesicular/genética , Niño , Preescolar , Codón sin Sentido , Exoma , Exones , Femenino , Humanos , Masculino , Microcefalia/genética , Trastornos del Neurodesarrollo/diagnóstico por imagen , Linaje , Sitios de Empalme de ARN , Síndrome
16.
Genet Med ; 23(2): 259-271, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33093671

RESUMEN

PURPOSE: The NIH Undiagnosed Diseases Network (UDN) evaluates participants with disorders that have defied diagnosis, applying personalized clinical and genomic evaluations and innovative research. The clinical sites of the UDN are essential to advancing the UDN mission; this study assesses their contributions relative to standard clinical practices. METHODS: We analyzed retrospective data from four UDN clinical sites, from July 2015 to September 2019, for diagnoses, new disease gene discoveries and the underlying investigative methods. RESULTS: Of 791 evaluated individuals, 231 received 240 diagnoses and 17 new disease-gene associations were recognized. Straightforward diagnoses on UDN exome and genome sequencing occurred in 35% (84/240). We considered these tractable in standard clinical practice, although genome sequencing is not yet widely available clinically. The majority (156/240, 65%) required additional UDN-driven investigations, including 90 diagnoses that occurred after prior nondiagnostic exome sequencing and 45 diagnoses (19%) that were nongenetic. The UDN-driven investigations included complementary/supplementary phenotyping, innovative analyses of genomic variants, and collaborative science for functional assays and animal modeling. CONCLUSION: Investigations driven by the clinical sites identified diagnostic and research paradigms that surpass standard diagnostic processes. The new diagnoses, disease gene discoveries, and delineation of novel disorders represent a model for genomic medicine and science.


Asunto(s)
Enfermedades no Diagnosticadas , Animales , Genómica , Humanos , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Estudios Retrospectivos , Secuenciación del Exoma
17.
Mol Genet Genomic Med ; 8(10): e1397, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32730690

RESUMEN

BACKGROUND: Resources within the Undiagnosed Diseases Network (UDN), such as genome sequencing (GS) and model organisms aid in diagnosis and identification of new disease genes, but are currently difficult to access by clinical providers. While these resources do contribute to diagnoses in many cases, they are not always necessary to reach diagnostic resolution. The UDN experience has been that participants can also receive diagnoses through the thoughtful and customized application of approaches and resources that are readily available in clinical settings. METHODS: The UDN Genetic Counseling and Testing Working Group collected case vignettes that illustrated how clinically available methods resulted in diagnoses. The case vignettes were classified into three themes; phenotypic considerations, selection of genetic testing, and evaluating exome/GS variants and data. RESULTS: We present 12 participants that illustrate how clinical practices such as phenotype-driven genomic investigations, consideration of variable expressivity, selecting the relevant tissue of interest for testing, utilizing updated testing platforms, and recognition of alternate transcript nomenclature resulted in diagnoses. CONCLUSION: These examples demonstrate that when a diagnosis is elusive, an iterative patient-specific approach utilizing assessment options available to clinical providers may solve a portion of cases. However, this does require increased provider time commitment, a particular challenge in the current practice of genomics.


Asunto(s)
Bases de Datos Factuales , Diagnóstico por Computador/métodos , Enfermedades Genéticas Congénitas/diagnóstico , Pruebas Genéticas/métodos , Diagnóstico Erróneo , Enfermedades no Diagnosticadas/diagnóstico , Adolescente , Niño , Preescolar , Femenino , Enfermedades Genéticas Congénitas/genética , Pruebas Genéticas/normas , Humanos , Difusión de la Información , Masculino , Persona de Mediana Edad , National Institutes of Health (U.S.) , Fenotipo , Medicina de Precisión/métodos , Enfermedades no Diagnosticadas/genética , Estados Unidos , Adulto Joven
18.
Genet Med ; 22(7): 1269-1275, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32366967

RESUMEN

PURPOSE: Guidelines by professional organizations for assessing variant pathogenicity include the recommendation to utilize biologically relevant transcripts; however, there is variability in transcript selection by laboratories. METHODS: We describe three patients whose genomic results were incorrect, because alternative transcripts and tissue expression patterns were not considered by the commercial laboratories. RESULTS: In individual 1, a pathogenic coding variant in a brain-expressed isoform of CKDL5 was missed twice on sequencing, because the variant was intronic in the transcripts considered in analysis. In individual 2, a microdeletion affecting KMT2C was not reported on microarray, since deletions of proximal exons in this gene are seen in healthy individuals; however, this individual had a more distal deletion involving the brain-expressed KMT2C isoform, giving her a diagnosis of Kleefstra syndrome. Individual 3 was reported to have a pathogenic variant in exon 10 of OFD1 on exome, but had no typical features of the OFD1-related disorders. Since exon 10 is spliced from the more biologically relevant transcripts of OFD1, it was determined that he did not have an OFD1 disorder. CONCLUSION: These examples illustrate the importance of considering alternative transcripts as a potential confounder when genetic results are negative or discordant with the phenotype.


Asunto(s)
Exoma , Diagnóstico Erróneo , Empalme Alternativo/genética , Exones/genética , Femenino , Humanos , Masculino , Isoformas de Proteínas/genética , Secuenciación del Exoma
19.
Am J Hum Genet ; 106(1): 26-40, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31870554

RESUMEN

The 22q11.2 deletion syndrome (22q11.2DS) results from non-allelic homologous recombination between low-copy repeats termed LCR22. About 60%-70% of individuals with the typical 3 megabase (Mb) deletion from LCR22A-D have congenital heart disease, mostly of the conotruncal type (CTD), whereas others have normal cardiac anatomy. In this study, we tested whether variants in the hemizygous LCR22A-D region are associated with risk for CTDs on the basis of the sequence of the 22q11.2 region from 1,053 22q11.2DS individuals. We found a significant association (FDR p < 0.05) of the CTD subset with 62 common variants in a single linkage disequilibrium (LD) block in a 350 kb interval harboring CRKL. A total of 45 of the 62 variants were associated with increased risk for CTDs (odds ratio [OR) ranges: 1.64-4.75). Associations of four variants were replicated in a meta-analysis of three genome-wide association studies of CTDs in affected individuals without 22q11.2DS. One of the replicated variants, rs178252, is located in an open chromatin region and resides in the double-elite enhancer, GH22J020947, that is predicted to regulate CRKL (CRK-like proto-oncogene, cytoplasmic adaptor) expression. Approximately 23% of patients with nested LCR22C-D deletions have CTDs, and inactivation of Crkl in mice causes CTDs, thus implicating this gene as a modifier. Rs178252 and rs6004160 are expression quantitative trait loci (eQTLs) of CRKL. Furthermore, set-based tests identified an enhancer that is predicted to target CRKL and is significantly associated with CTD risk (GH22J020946, sequence kernal association test (SKAT) p = 7.21 × 10-5) in the 22q11.2DS cohort. These findings suggest that variance in CTD penetrance in the 22q11.2DS population can be explained in part by variants affecting CRKL expression.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 22/genética , Cardiopatías Congénitas/genética , Polimorfismo de Nucleótido Simple , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Estudio de Asociación del Genoma Completo , Cardiopatías Congénitas/patología , Humanos , Desequilibrio de Ligamiento , Masculino , Fenotipo , Proto-Oncogenes Mas , Duplicaciones Segmentarias en el Genoma
20.
J Genet Couns ; 28(6): 1107-1118, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31478310

RESUMEN

BACKGROUND: Despite growing evidence of diagnostic yield and clinical utility of whole exome sequencing (WES) in patients with undiagnosed diseases, there remain significant cost and reimbursement barriers limiting access to such testing. The diagnostic yield and resulting clinical actions of WES for patients who previously faced insurance coverage barriers have not yet been explored. METHODS: We performed a retrospective descriptive analysis of clinical WES outcomes for patients facing insurance coverage barriers prior to clinical WES and who subsequently enrolled in the Undiagnosed Diseases Network (UDN). Clinical WES was completed as a result of participation in the UDN. Payer type, molecular diagnostic yield, and resulting clinical actions were evaluated. RESULTS: Sixty-six patients in the UDN faced insurance coverage barriers to WES at the time of enrollment (67% public payer, 26% private payer). Forty-two of 66 (64%) received insurance denial for clinician-ordered WES, 19/66 (29%) had health insurance through a payer known not to cover WES, and 5/66 (8%) had previous payer denial of other genetic tests. Clinical WES results yielded a molecular diagnosis in 23 of 66 patients (35% [78% pediatric, 65% neurologic indication]). Molecular diagnosis resulted in clinical actions in 14 of 23 patients (61%). CONCLUSIONS: These data demonstrate that a substantial proportion of patients who encountered insurance coverage barriers to WES had a clinically actionable molecular diagnosis, supporting the notion that WES has value as a covered benefit for patients who remain undiagnosed despite objective clinical findings.


Asunto(s)
Secuenciación del Exoma , Cobertura del Seguro , Enfermedades no Diagnosticadas/genética , Niño , Preescolar , Femenino , Pruebas Genéticas/métodos , Humanos , Masculino , Estudios Retrospectivos , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...